Skip to main content
Top
Published in:

08-08-2022

DLW-NAS: Differentiable Light-Weight Neural Architecture Search

Authors: Shu Li, Yuxu Mao, Fuchang Zhang, Dong Wang, Guoqiang Zhong

Published in: Cognitive Computation | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, the method of automatically constructing convolutional neural networks based on neural architecture search has attracted wide attention, and greatly reduces the manual intervention and the cost of manual design of neural networks. However, most neural architecture search methods focus on the performance of the model, but ignore the complexity of the model, which makes it difficult to deploy this method on devices with limited resources. In this paper, a novel differentiable light-weight architecture search method named DLW-NAS is proposed, which aims to search convolutional neural networks (CNNs) with remarkable performance as well as a small amount of parameters and floating point operations (FLOPs). Concretely, in order to limit the parameters and FLOPs from the source of neural architecture search (NAS), we build a light-weight search space containing effective light-weight operations. Moreover, we design a differentiable NAS strategy with computation complexity constraints. In addition, we propose a neural architecture optimization method, which makes the topology of the searched architecture sparse. The experimental results show that DLW-NAS achieves 2.73% error rate on CIFAR-10, which is comparable to the state-of-the-art (SOTA) methods. However, it only needs 2.3M parameters and 334M FLOPs, which reduces that of the SOTA DARTS by 30% and 36% in parameters and FLOPs, respectively. The searched model on CIFAR-100 uses only 2.47M parameters and 376M FLOPs with an error rate of only 17.12%. On ImageNet, compared with the SOTA MobileNet, DLW-NAS achieves 3.3% better top-1 accuracy with much fewer parameters and FLOPs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Han K, Wang Y, Tian Q, Guo J, Xu C, Xu C. Ghostnet: more features from cheap operations. In: CVPR. 2020. p. 1577–586. Han K, Wang Y, Tian Q, Guo J, Xu C, Xu C. Ghostnet: more features from cheap operations. In: CVPR. 2020. p. 1577–586.
2.
go back to reference Sun Y, Xue B, Zhang M, Yen GG, Lv J. Automatically designing CNN architectures using the genetic algorithm for image classification. IEEE Trans Cybern. 2020;50(9):3840–54.CrossRef Sun Y, Xue B, Zhang M, Yen GG, Lv J. Automatically designing CNN architectures using the genetic algorithm for image classification. IEEE Trans Cybern. 2020;50(9):3840–54.CrossRef
3.
go back to reference Orsic M, Segvic S. Efficient semantic segmentation with pyramidal fusion. Pattern Recognit. 2021;110:107611. Orsic M, Segvic S. Efficient semantic segmentation with pyramidal fusion. Pattern Recognit. 2021;110:107611.
4.
go back to reference Yang L, Wang H, Zeng Q, Liu Y, Bian G. A hybrid deep segmentation network for fundus vessels via deep-learning framework. Neurocomputing. 2021;448:168–78.CrossRef Yang L, Wang H, Zeng Q, Liu Y, Bian G. A hybrid deep segmentation network for fundus vessels via deep-learning framework. Neurocomputing. 2021;448:168–78.CrossRef
5.
go back to reference Ebadi N, Jozani M, Choo KKR, Rad P. A memory network information retrieval model for identification of news misinformation. IEEE Transactions on Big Data. 2021. Ebadi N, Jozani M, Choo KKR, Rad P. A memory network information retrieval model for identification of news misinformation. IEEE Transactions on Big Data. 2021.
6.
go back to reference Mao Y, Zhong G, Wang H, Huang K. MCRN: a new content-based music classification and recommendation network. In: ICONIP, vol. 1332. 2020. p. 771–79. Mao Y, Zhong G, Wang H, Huang K. MCRN: a new content-based music classification and recommendation network. In: ICONIP, vol. 1332. 2020. p. 771–79.
7.
go back to reference Zoph B, Le QV. Neural architecture search with reinforcement learning. In: ICLR. 2017. Zoph B, Le QV. Neural architecture search with reinforcement learning. In: ICLR. 2017.
8.
go back to reference Liu H, Simonyan K, Yang Y. DARTS: differentiable architecture search. In: ICLR. 2019. Liu H, Simonyan K, Yang Y. DARTS: differentiable architecture search. In: ICLR. 2019.
9.
go back to reference Zhao J, Zhang R, Zhou Z, Chen S, Liu Q. A neural architecture search method based on gradient descent for remaining useful life estimation. Neurocomputing. 2021;438(1). Zhao J, Zhang R, Zhou Z, Chen S, Liu Q. A neural architecture search method based on gradient descent for remaining useful life estimation. Neurocomputing. 2021;438(1).
11.
go back to reference Iandola FN, Moskewicz MW, Ashraf K, Han S, Dally WJ, Keutzer K. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model size. CoRR abs/1602.07360. 2016. Iandola FN, Moskewicz MW, Ashraf K, Han S, Dally WJ, Keutzer K. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model size. CoRR abs/1602.07360. 2016.
12.
go back to reference Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H. Mobilenets: efficient convolutional neural networks for mobile vision applications. CoRR abs/1704.04861. 2017. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H. Mobilenets: efficient convolutional neural networks for mobile vision applications. CoRR abs/1704.04861. 2017.
13.
go back to reference Zhang X, Zhou X, Lin M, Sun J. Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: CVPR. 2018. p. 6848–6856. Zhang X, Zhou X, Lin M, Sun J. Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: CVPR. 2018. p. 6848–6856.
14.
go back to reference Cai H, Gan C, Wang T, Zhang Z, Han S. Once-for-All: train one network and specialize it for efficient deployment. In: ICLR. 2020. Cai H, Gan C, Wang T, Zhang Z, Han S. Once-for-All: train one network and specialize it for efficient deployment. In: ICLR. 2020.
15.
go back to reference Wu B, Dai X, Zhang P, Wang Y, Sun F, Wu Y, Tian Y, Vajda P, Jia Y, Keutzer K. FBNet: hardware-aware efficient ConvNet design via differentiable neural architecture search. In: CVPR. 2019. p. 10734–10742. Wu B, Dai X, Zhang P, Wang Y, Sun F, Wu Y, Tian Y, Vajda P, Jia Y, Keutzer K. FBNet: hardware-aware efficient ConvNet design via differentiable neural architecture search. In: CVPR. 2019. p. 10734–10742.
16.
go back to reference Cai H, Zhu L, Han S. ProxylessNAS: direct neural architecture search on target task and hardware. In: ICLR. 2019. Cai H, Zhu L, Han S. ProxylessNAS: direct neural architecture search on target task and hardware. In: ICLR. 2019.
17.
go back to reference Zhou H, Yang M, Wang J, Pan W. BayesNAS: a Bayesian approach for neural architecture search. In: ICML, vol. 97. 2019. p. 7603–613. Zhou H, Yang M, Wang J, Pan W. BayesNAS: a Bayesian approach for neural architecture search. In: ICML, vol. 97. 2019. p. 7603–613.
18.
go back to reference Zhang X, Huang Z, Wang N. You only search once: single shot neural architecture search via direct sparse optimization. CoRR abs/1811.01567. 2019. Zhang X, Huang Z, Wang N. You only search once: single shot neural architecture search via direct sparse optimization. CoRR abs/1811.01567. 2019.
19.
go back to reference Weng Y, Zhou T, Liu L, Xia C. Automatic convolutional neural architecture search for image classification under different scenes. IEEE Access. 2019;7:38495–506.CrossRef Weng Y, Zhou T, Liu L, Xia C. Automatic convolutional neural architecture search for image classification under different scenes. IEEE Access. 2019;7:38495–506.CrossRef
20.
go back to reference Li X, Wang W, Hu X, Yang J. Selective kernel networks. In: CVPR. 2019. p. 510–19. Li X, Wang W, Hu X, Yang J. Selective kernel networks. In: CVPR. 2019. p. 510–19.
21.
go back to reference Li G, Zhang X, Wang Z, Li Z, Zhang T. STACNAS: towards stable and consistent optimization for differentiable neural architecture search. CoRR abs/1909.11926. 2019. Li G, Zhang X, Wang Z, Li Z, Zhang T. STACNAS: towards stable and consistent optimization for differentiable neural architecture search. CoRR abs/1909.11926. 2019.
22.
go back to reference Wu Y, Liu A, Huang Z, Zhang S, Gool LV. Neural architecture search as sparse supernet. CoRR abs/2007.16112. 2020. Wu Y, Liu A, Huang Z, Zhang S, Gool LV. Neural architecture search as sparse supernet. CoRR abs/2007.16112. 2020.
23.
go back to reference Krizhevsky A. Learning multiple layers of features from tiny images. University of Toronto. 2012. Krizhevsky A. Learning multiple layers of features from tiny images. University of Toronto. 2012.
24.
go back to reference Deng J, Dong W, Socher R, Li L, Li K, Li F. Imagenet: a large-scale hierarchical image database. In: CVPR. 2009. p. 248–55. Deng J, Dong W, Socher R, Li L, Li K, Li F. Imagenet: a large-scale hierarchical image database. In: CVPR. 2009. p. 248–55.
25.
go back to reference Chen X, Xie L, Wu J, Tian Q. Progressive differentiable architecture search: bridging the depth gap between search and evaluation. In: ICCV. 2019. p. 1294–303 Chen X, Xie L, Wu J, Tian Q. Progressive differentiable architecture search: bridging the depth gap between search and evaluation. In: ICCV. 2019. p. 1294–303
26.
go back to reference Szegedy C, Liu W, Jia Y, Sermanet P, Reed SE, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: CVPR. 2015. p. 1–9. Szegedy C, Liu W, Jia Y, Sermanet P, Reed SE, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: CVPR. 2015. p. 1–9.
27.
go back to reference Devries T, Taylor GW. Improved regularization of convolutional neural networks with cutout. CoRR abs/1708.04552. 2017 Devries T, Taylor GW. Improved regularization of convolutional neural networks with cutout. CoRR abs/1708.04552. 2017
28.
go back to reference Huang G, Liu Z, vander Maaten L, Weinberger KQ. Densely connected convolutional networks. In: CVPR. 2017. p. 2261–269. Huang G, Liu Z, vander Maaten L, Weinberger KQ. Densely connected convolutional networks. In: CVPR. 2017. p. 2261–269.
29.
go back to reference Li L, Talwalkar A. Random search and reproducibility for neural architecture search. In: Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI, Tel Aviv, Israel, July 22–25. AUAI Press; 2019. p. 367–77. Li L, Talwalkar A. Random search and reproducibility for neural architecture search. In: Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI, Tel Aviv, Israel, July 22–25. AUAI Press; 2019. p. 367–77.
30.
go back to reference Real E, Aggarwal A, Huang Y, Le QV. Regularized evolution for image classifier architecture search. In: AAAI. 2019. p. 4780–4789. Real E, Aggarwal A, Huang Y, Le QV. Regularized evolution for image classifier architecture search. In: AAAI. 2019. p. 4780–4789.
31.
go back to reference Liu H, Simonyan K, Vinyals O, Fernando C, Kavukcuoglu K. Hierarchical representations for efficient architecture search. In: 6th International Conference on Learning Representations, ICLR, Vancouver, BC, Canada, April 30 - May 3, Conference Track Proceedings. 2018. OpenReview.net. Liu H, Simonyan K, Vinyals O, Fernando C, Kavukcuoglu K. Hierarchical representations for efficient architecture search. In: 6th International Conference on Learning Representations, ICLR, Vancouver, BC, Canada, April 30 - May 3, Conference Track Proceedings. 2018. OpenReview.​net.
32.
go back to reference Yang Z, Wang Y, Chen X, Shi B, Xu C, Xu C, Tian Q, Xu C. CARS: continuous evolution for efficient neural architecture search. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Seattle, WA, USA, June 13-19. IEEE; 2020. p. 1826–835. Yang Z, Wang Y, Chen X, Shi B, Xu C, Xu C, Tian Q, Xu C. CARS: continuous evolution for efficient neural architecture search. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Seattle, WA, USA, June 13-19. IEEE; 2020. p. 1826–835.
33.
go back to reference Baker B, Gupta O, Naik N, Raskar R. Designing neural network architectures using reinforcement learning. In: 5th International Conference on Learning Representations. ICLR; 2017. OpenReview.net. Baker B, Gupta O, Naik N, Raskar R. Designing neural network architectures using reinforcement learning. In: 5th International Conference on Learning Representations. ICLR; 2017. OpenReview.​net.
34.
go back to reference Zhong Z, Yang Z, Deng B, Yan J, Wu W, Shao J, Liu C. Blockqnn: Efficient block-wise neural network architecture generation. CoRR. 2018. Zhong Z, Yang Z, Deng B, Yan J, Wu W, Shao J, Liu C. Blockqnn: Efficient block-wise neural network architecture generation. CoRR. 2018.
35.
go back to reference Pham H, Guan MY, Zoph B, Le QV, Dean J. Efficient neural architecture search via parameter sharing. In: ICML, vol. 80. 2018. p. 4092–4101. Pham H, Guan MY, Zoph B, Le QV, Dean J. Efficient neural architecture search via parameter sharing. In: ICML, vol. 80. 2018. p. 4092–4101.
36.
go back to reference Cai H, Yang J, Zhang W, Han S, Yu Y. Path-level network transformation for efficient architecture search. In: Proceedings of the 35th International Conference on Machine Learning, ICML, Stockholmsmässan, Stockholm, Sweden, July 10–15. PMLR; 2018. p. 677–86. Cai H, Yang J, Zhang W, Han S, Yu Y. Path-level network transformation for efficient architecture search. In: Proceedings of the 35th International Conference on Machine Learning, ICML, Stockholmsmässan, Stockholm, Sweden, July 10–15. PMLR; 2018. p. 677–86.
37.
go back to reference Liu C, Zoph B, Neumann M, Shlens J, Hua W, Li L, Fei-Fei L, Yuille AL, Huang J, Murphy K. Progressive neural architecture search. In: Computer Vision - ECCV - 15th European Conference, Munich, Germany, September 8–14, Proceedings, Part I. Springer; 2018. Liu C, Zoph B, Neumann M, Shlens J, Hua W, Li L, Fei-Fei L, Yuille AL, Huang J, Murphy K. Progressive neural architecture search. In: Computer Vision - ECCV - 15th European Conference, Munich, Germany, September 8–14, Proceedings, Part I. Springer; 2018.
38.
go back to reference Perez-Rua J, Baccouche M, Pateux S. Efficient progressive neural architecture search. In: British Machine Vision Conference, BMVC, Newcastle, UK, September 3-6. BMVA Press; 2018. p. 150. Perez-Rua J, Baccouche M, Pateux S. Efficient progressive neural architecture search. In: British Machine Vision Conference, BMVC, Newcastle, UK, September 3-6. BMVA Press; 2018. p. 150.
39.
go back to reference Zhang C, Ren M, Urtasun R. Graph hypernetworks for neural architecture search abs/1810.05749. 2018. Zhang C, Ren M, Urtasun R. Graph hypernetworks for neural architecture search abs/1810.05749. 2018.
40.
go back to reference Xie S, Zheng H, Liu C, Lin L. SNAS: stochastic neural architecture search. In: ICLR. 2019. Xie S, Zheng H, Liu C, Lin L. SNAS: stochastic neural architecture search. In: ICLR. 2019.
41.
go back to reference Dong X, Yang Y. Searching for a robust neural architecture in four GPU hours. In: CVPR. 2019. p. 1761–1770. Dong X, Yang Y. Searching for a robust neural architecture in four GPU hours. In: CVPR. 2019. p. 1761–1770.
42.
go back to reference Xie S, Girshick RB, Dollár P, Tu Z, He K. Aggregated residual transformations for deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Honolulu, HI, USA, July 21–26. IEEE Computer Society; 2017. p. 5987–995. Xie S, Girshick RB, Dollár P, Tu Z, He K. Aggregated residual transformations for deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Honolulu, HI, USA, July 21–26. IEEE Computer Society; 2017. p. 5987–995.
43.
go back to reference Zoph B, Vasudevan V, Shlens J, Le QV. Learning transferable architectures for scalable image recognition. In: CVPR. 2018. p. 8697–8710. Zoph B, Vasudevan V, Shlens J, Le QV. Learning transferable architectures for scalable image recognition. In: CVPR. 2018. p. 8697–8710.
Metadata
Title
DLW-NAS: Differentiable Light-Weight Neural Architecture Search
Authors
Shu Li
Yuxu Mao
Fuchang Zhang
Dong Wang
Guoqiang Zhong
Publication date
08-08-2022
Publisher
Springer US
Published in
Cognitive Computation / Issue 2/2023
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-022-10046-y

Other articles of this Issue 2/2023

Cognitive Computation 2/2023 Go to the issue

Premium Partner