Skip to main content
Top

13-07-2024 | Original Paper

DNA codes over \(GR(2^{3},d)[X]/\langle X^{2},2X \rangle\)

Authors: C. Álvarez-García, C. A. Castillo-Guillén, Mohamed Badaoui

Published in: Applicable Algebra in Engineering, Communication and Computing

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The main results of this paper are in two directions. First, the family of finite local rings of length 4 whose annihilator of their maximal ideals have length 2 is determined. Second, the structure of constacyclic, reversible and DNA codes over those rings are described, the length of the code is relatively prime to the characteristic of the residue field of the ring.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Álvarez-García, C., Castillo-Guillén, C.A.: DNA codes over finite local Frobenius non-chain rings of length \(5\) and nilpotency index \(4\). An. Stiint. Univ. Ovidius Constanta Ser. Mat. 30(1), 89–108 (2022)MathSciNet Álvarez-García, C., Castillo-Guillén, C.A.: DNA codes over finite local Frobenius non-chain rings of length \(5\) and nilpotency index \(4\). An. Stiint. Univ. Ovidius Constanta Ser. Mat. 30(1), 89–108 (2022)MathSciNet
3.
go back to reference Álvarez-García, C., Castillo-Guillén, C.A.: Self dual reversible and complementary duals constacyclic codes over finite local Frobenius non-chain rings of length \(5\) and nilpotency index \(4\). An. Stiint. Univ. Ovidius Constanta Ser. Mat. 29(2), 25–50 (2021)MathSciNet Álvarez-García, C., Castillo-Guillén, C.A.: Self dual reversible and complementary duals constacyclic codes over finite local Frobenius non-chain rings of length \(5\) and nilpotency index \(4\). An. Stiint. Univ. Ovidius Constanta Ser. Mat. 29(2), 25–50 (2021)MathSciNet
4.
go back to reference Abualrub, T., Ghrayeb, A., Zeng, X.N.: Construction of cyclic codes over \(GF(4)\) for DNA computing. J. Frankl. Inst. 343, 448–457 (2006)MathSciNetCrossRef Abualrub, T., Ghrayeb, A., Zeng, X.N.: Construction of cyclic codes over \(GF(4)\) for DNA computing. J. Frankl. Inst. 343, 448–457 (2006)MathSciNetCrossRef
5.
go back to reference Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)CrossRef Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)CrossRef
6.
go back to reference Bayram, A., Oztas, E.S., Siap, I.: Codes over \(\mathbb{F} _{4}+v\mathbb{F} _{4}\) and some DNA applications. Des. Codes Cryptogr. 80, 379–393 (2016)MathSciNetCrossRef Bayram, A., Oztas, E.S., Siap, I.: Codes over \(\mathbb{F} _{4}+v\mathbb{F} _{4}\) and some DNA applications. Des. Codes Cryptogr. 80, 379–393 (2016)MathSciNetCrossRef
7.
go back to reference Castillo-Guillén, C.A., Rentería-Márquez, C., Tapia-Recillas, H.: Constacyclic codes over finite local Frobenius non-chain rings with nilpotency index \(3\). Finite Fields Their Appl. 43, 1–21 (2017)MathSciNetCrossRef Castillo-Guillén, C.A., Rentería-Márquez, C., Tapia-Recillas, H.: Constacyclic codes over finite local Frobenius non-chain rings with nilpotency index \(3\). Finite Fields Their Appl. 43, 1–21 (2017)MathSciNetCrossRef
8.
go back to reference Castillo-Guillén, C.A., Rentería-Márquez, C., Sarmiento, E., Villareal, R., Tapia-Recillas, H.: The dual of a constacyclic code, constacyclic self dual, constacyclic reversible and constacyclic codes with complementary duals over finite local Frobenius non-chain rings of nilpotency index \(3\). Discret. Math. 342, 2283–2296 (2019)CrossRef Castillo-Guillén, C.A., Rentería-Márquez, C., Sarmiento, E., Villareal, R., Tapia-Recillas, H.: The dual of a constacyclic code, constacyclic self dual, constacyclic reversible and constacyclic codes with complementary duals over finite local Frobenius non-chain rings of nilpotency index \(3\). Discret. Math. 342, 2283–2296 (2019)CrossRef
9.
go back to reference Dinh, H.Q., López-Permouth, S.R.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inf. Theory 50, 1728–1744 (2004)MathSciNetCrossRef Dinh, H.Q., López-Permouth, S.R.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inf. Theory 50, 1728–1744 (2004)MathSciNetCrossRef
10.
go back to reference Dinh, H.Q., Singh, A.K., Pattanayak, S., Sriboonchitta, S.: Cyclic DNA codes over the ring \(\mathbb{F} _{2}+u\mathbb{F} _{2}+v\mathbb{F} _{2}+uv\mathbb{F} _{2}+v^{2}\mathbb{F} _{2}+uv^{2}\mathbb{F} _{2}\). Des. Codes Cryptogr. 86, 1451–1467 (2018)MathSciNetCrossRef Dinh, H.Q., Singh, A.K., Pattanayak, S., Sriboonchitta, S.: Cyclic DNA codes over the ring \(\mathbb{F} _{2}+u\mathbb{F} _{2}+v\mathbb{F} _{2}+uv\mathbb{F} _{2}+v^{2}\mathbb{F} _{2}+uv^{2}\mathbb{F} _{2}\). Des. Codes Cryptogr. 86, 1451–1467 (2018)MathSciNetCrossRef
12.
go back to reference Guenda, K., Gulliver, T.A.: Construction of cyclic codes over \(\mathbb{F} _{2}+u\mathbb{F} _{2}\) for DNA computing. Appl. Algebra Engrg. Comm. Comput. 24, 445–459 (2013)MathSciNetCrossRef Guenda, K., Gulliver, T.A.: Construction of cyclic codes over \(\mathbb{F} _{2}+u\mathbb{F} _{2}\) for DNA computing. Appl. Algebra Engrg. Comm. Comput. 24, 445–459 (2013)MathSciNetCrossRef
13.
go back to reference Head, T.: Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. Bull. Math. Biol. 49, 737–759 (1987)MathSciNetCrossRef Head, T.: Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. Bull. Math. Biol. 49, 737–759 (1987)MathSciNetCrossRef
14.
go back to reference Kaur, J., Sehmi, R., Dutt, S.: Reversible complement cyclic codes over Galois rings with application to DNA codes. Discret. Appl. Math. 280, 162–170 (2020)MathSciNetCrossRef Kaur, J., Sehmi, R., Dutt, S.: Reversible complement cyclic codes over Galois rings with application to DNA codes. Discret. Appl. Math. 280, 162–170 (2020)MathSciNetCrossRef
15.
go back to reference MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1998) MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1998)
16.
go back to reference Matsumura, H.: Commutative Ring Theory. Cambridge University Press, Cambridge (1986) Matsumura, H.: Commutative Ring Theory. Cambridge University Press, Cambridge (1986)
17.
go back to reference McDonald, B.R.: Finite Rings with Identity. Marcel Dekker, New York (1974) McDonald, B.R.: Finite Rings with Identity. Marcel Dekker, New York (1974)
18.
go back to reference Siap, I., Abualrub, T., Ghrayeb, A.: Cyclic DNA codes over the ring \(\mathbb{F} _{2}[u]/\langle u^{2}-1\rangle\) based on the deletion distance. J. Frankl. Inst. 346, 731–740 (2009)CrossRef Siap, I., Abualrub, T., Ghrayeb, A.: Cyclic DNA codes over the ring \(\mathbb{F} _{2}[u]/\langle u^{2}-1\rangle\) based on the deletion distance. J. Frankl. Inst. 346, 731–740 (2009)CrossRef
19.
go back to reference Yildiz, B., Siap, I.: Cyclic codes over \(\mathbb{F} _{2}[u]/\langle u^{4}-1\rangle\) and applications to DNA codes. Comput. Math. Appl. 63, 1169–1176 (2012)MathSciNetCrossRef Yildiz, B., Siap, I.: Cyclic codes over \(\mathbb{F} _{2}[u]/\langle u^{4}-1\rangle\) and applications to DNA codes. Comput. Math. Appl. 63, 1169–1176 (2012)MathSciNetCrossRef
Metadata
Title
DNA codes over
Authors
C. Álvarez-García
C. A. Castillo-Guillén
Mohamed Badaoui
Publication date
13-07-2024
Publisher
Springer Berlin Heidelberg
Published in
Applicable Algebra in Engineering, Communication and Computing
Print ISSN: 0938-1279
Electronic ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-024-00667-1

Premium Partner