Skip to main content
Top
Published in: Energy Systems 2/2020

10-01-2019 | Original Paper

Do unit commitment constraints affect generation expansion planning? A scalable stochastic model

Authors: Anna Schwele, Jalal Kazempour, Pierre Pinson

Published in: Energy Systems | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to increasing penetration of stochastic renewable energy sources in electric power systems, the need for flexible resources especially from fast-start conventional generation units (e.g., combined cycle gas turbine plants) is growing. The fast-start conventional units are being operated more frequently in order to respond to the variability and uncertainty of stochastic generation. This raises two important technical questions: as it is common in the literature, is it still an appropriate simplification to ignore the operational unit commitment (UC) constraints of conventional units within the generation expansion planning optimization? And if not, which UC constraint impacts most the expansion planning outcomes? To answer these questions, this paper aims at measuring the planning inefficiency (i.e., the underestimation of need for new generation capacity) caused by ignoring each UC constraint. To this purpose, we develop a centralized network-constrained generation expansion planning model incorporating UC constraints. In particular, we model start-up and shut-down costs, minimum production level and hourly ramping limits of conventional units. Wind power production is considered as the only source of uncertainty, and is modeled through a set of scenarios. A two-stage stochastic programming tool is used, whose first stage determines the long-term expansion and short-term UC decisions over different hours of representative days, while the second stage models the real-time operation for accommodating imbalances arising from wind deviation under different scenarios. Since this problem is potentially hard to solve especially with a large number of representative days and scenarios, a multi-cut Benders’ decomposition algorithm is implemented. The well-functioning of the proposed model and the impact of each UC constraint on planning outcomes are evaluated using an extensive numerical study. In our case studies, the exclusion of ramping constraints from planning optimization causes large error and is the most distorting simplification.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference Batlle, C., Rodilla, P.: An enhanced screening curves method for considering thermal cycling operation costs in generation expansion planning. IEEE Trans. Power Syst. 28(4), 3683–3691 (2013)CrossRef Batlle, C., Rodilla, P.: An enhanced screening curves method for considering thermal cycling operation costs in generation expansion planning. IEEE Trans. Power Syst. 28(4), 3683–3691 (2013)CrossRef
5.
6.
go back to reference Birge, J.R., Louveaux, F.V.: A multicut algorithm for two-stage stochastic linear programs. Eur. J. Oper. Res. 34(3), 384–392 (1988)MathSciNetMATHCrossRef Birge, J.R., Louveaux, F.V.: A multicut algorithm for two-stage stochastic linear programs. Eur. J. Oper. Res. 34(3), 384–392 (1988)MathSciNetMATHCrossRef
7.
go back to reference Bruno, S., Ahmed, S., Shapiro, A., Street, A.: Risk neutral and risk averse approaches to multistage renewable investment planning under uncertainty. Eur. J. Oper. Res. 250(3), 979–989 (2016)MathSciNetMATHCrossRef Bruno, S., Ahmed, S., Shapiro, A., Street, A.: Risk neutral and risk averse approaches to multistage renewable investment planning under uncertainty. Eur. J. Oper. Res. 250(3), 979–989 (2016)MathSciNetMATHCrossRef
8.
go back to reference Conejo, A.J., Baringo, L., Kazempour, S.J., Siddiqui, A.S.: Investment in Electricity Generation and Transmission: Decision Making Under Uncertainty. Springer, Berlin (2016)CrossRef Conejo, A.J., Baringo, L., Kazempour, S.J., Siddiqui, A.S.: Investment in Electricity Generation and Transmission: Decision Making Under Uncertainty. Springer, Berlin (2016)CrossRef
9.
go back to reference Conejo, A.J., Carrión, M., Morales, J.M.: Decision Making Under Uncertainty in Electricity Markets. International Series in Operations Research and Management Science. Springer, New York (2010)MATHCrossRef Conejo, A.J., Carrión, M., Morales, J.M.: Decision Making Under Uncertainty in Electricity Markets. International Series in Operations Research and Management Science. Springer, New York (2010)MATHCrossRef
10.
go back to reference Conejo, A.J., Castillo, E., Minguez, R., García-Bertrand, R.: Decomposition Techniques in Mathematical Programming: Engineering and Science Applications. Springer, Berlin (2006)MATH Conejo, A.J., Castillo, E., Minguez, R., García-Bertrand, R.: Decomposition Techniques in Mathematical Programming: Engineering and Science Applications. Springer, Berlin (2006)MATH
11.
go back to reference Connolly, D., Lund, H., Mathiesen, B.: Smart energy Europe: the technical and economic impact of one potential 100% renewable energy scenario for the European Union. Renew. Sustain. Energy Rev. 60, 1634–1653 (2016)CrossRef Connolly, D., Lund, H., Mathiesen, B.: Smart energy Europe: the technical and economic impact of one potential 100% renewable energy scenario for the European Union. Renew. Sustain. Energy Rev. 60, 1634–1653 (2016)CrossRef
12.
go back to reference Dehghan, S., Amjady, N., Kazemi, A.: Two-stage robust generation expansion planning: a mixed integer linear programming model. IEEE Trans. Power Syst. 29(2), 584–597 (2014)CrossRef Dehghan, S., Amjady, N., Kazemi, A.: Two-stage robust generation expansion planning: a mixed integer linear programming model. IEEE Trans. Power Syst. 29(2), 584–597 (2014)CrossRef
13.
go back to reference Flores, J.R., Montagna, J.M., Vecchietti, A.: An optimization approach for long term investments planning in energy. Appl. Energy 122, 162–178 (2014)CrossRef Flores, J.R., Montagna, J.M., Vecchietti, A.: An optimization approach for long term investments planning in energy. Appl. Energy 122, 162–178 (2014)CrossRef
14.
go back to reference Flores-Quiroz, A., Palma-Behnke, R., Zakeri, G., Moreno, R.: A column generation approach for solving generation expansion planning problems with high renewable energy penetration. Electr. Power Syst. Res. 136, 232–241 (2016)CrossRef Flores-Quiroz, A., Palma-Behnke, R., Zakeri, G., Moreno, R.: A column generation approach for solving generation expansion planning problems with high renewable energy penetration. Electr. Power Syst. Res. 136, 232–241 (2016)CrossRef
15.
go back to reference Gil, J., Caballero, A., Conejo, A.J.: Power cycling: CCGTs: the critical link between the electricity and natural gas markets. IEEE Power Energy Magz. 12(6), 40–48 (2014)CrossRef Gil, J., Caballero, A., Conejo, A.J.: Power cycling: CCGTs: the critical link between the electricity and natural gas markets. IEEE Power Energy Magz. 12(6), 40–48 (2014)CrossRef
16.
go back to reference Hua, B., Baldick, R., Wang, J.: Representing operational flexibility in generation expansion planning through convex relaxation of unit commitment. IEEE Trans. Power Syst. 33(2), 2272–2281 (2018)CrossRef Hua, B., Baldick, R., Wang, J.: Representing operational flexibility in generation expansion planning through convex relaxation of unit commitment. IEEE Trans. Power Syst. 33(2), 2272–2281 (2018)CrossRef
17.
go back to reference Jin, S., Botterud, A., Ryan, S.M.: Temporal versus stochastic granularity in thermal generation capacity planning with wind power. IEEE Trans. Power Syst. 29(5), 2033–2041 (2014)CrossRef Jin, S., Botterud, A., Ryan, S.M.: Temporal versus stochastic granularity in thermal generation capacity planning with wind power. IEEE Trans. Power Syst. 29(5), 2033–2041 (2014)CrossRef
18.
go back to reference Jin, S., Ryan, S.M., Watson, J.P., Woodruff, D.L.: Modeling and solving a large-scale generation expansion planning problem under uncertainty. Energy Syst. 2(3–4), 209–242 (2011)CrossRef Jin, S., Ryan, S.M., Watson, J.P., Woodruff, D.L.: Modeling and solving a large-scale generation expansion planning problem under uncertainty. Energy Syst. 2(3–4), 209–242 (2011)CrossRef
19.
go back to reference Johnson, E.P.: The cost of carbon dioxide abatement from state renewable portfolio standards. Resour. Energy Econ. 36(2), 332–350 (2014)CrossRef Johnson, E.P.: The cost of carbon dioxide abatement from state renewable portfolio standards. Resour. Energy Econ. 36(2), 332–350 (2014)CrossRef
20.
go back to reference de Jonghe, C., Delarue, E., Belmans, R., d’Haeseleer, W.: Determining optimal electricity technology mix with high level of wind power penetration. Appl. Energy 88(6), 2231–2238 (2011)CrossRef de Jonghe, C., Delarue, E., Belmans, R., d’Haeseleer, W.: Determining optimal electricity technology mix with high level of wind power penetration. Appl. Energy 88(6), 2231–2238 (2011)CrossRef
21.
go back to reference de Jonghe, C., Hobbs, B.F., Belmans, R.: Optimal generation mix with short-term demand response and wind penetration. IEEE Trans. Power Syst. 27(2), 830–839 (2012)CrossRef de Jonghe, C., Hobbs, B.F., Belmans, R.: Optimal generation mix with short-term demand response and wind penetration. IEEE Trans. Power Syst. 27(2), 830–839 (2012)CrossRef
22.
go back to reference Kamalinia, S., Shahidehpour, M.: Generation expansion planning in wind-thermal power systems. IET Gen. Transmission Distrib. 4(8), 940 (2010)CrossRef Kamalinia, S., Shahidehpour, M.: Generation expansion planning in wind-thermal power systems. IET Gen. Transmission Distrib. 4(8), 940 (2010)CrossRef
23.
go back to reference Kazempour, J., Hobbs, B.F.: Value of flexible resources, virtual bidding, and self-scheduling in two-settlement electricity markets with wind generation - part II: ISO models and application. IEEE Trans. Power Syst. 33(1), 760–770 (2018)CrossRef Kazempour, J., Hobbs, B.F.: Value of flexible resources, virtual bidding, and self-scheduling in two-settlement electricity markets with wind generation - part II: ISO models and application. IEEE Trans. Power Syst. 33(1), 760–770 (2018)CrossRef
24.
go back to reference Kazempour, S.J., Conejo, A.J., Ruiz, C.: Strategic generation investment using a complementarity approach. IEEE Trans. Power Syst. 26(2), 940–948 (2011)CrossRef Kazempour, S.J., Conejo, A.J., Ruiz, C.: Strategic generation investment using a complementarity approach. IEEE Trans. Power Syst. 26(2), 940–948 (2011)CrossRef
25.
go back to reference Koltsaklis, N.E., Georgiadis, M.C.: A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints. Appl. Energy 158, 310–331 (2015)CrossRef Koltsaklis, N.E., Georgiadis, M.C.: A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints. Appl. Energy 158, 310–331 (2015)CrossRef
26.
go back to reference Koltsaklis, N.E., Liu, P., Georgiadis, M.C.: An integrated stochastic multi-regional long-term energy planning model incorporating autonomous power systems and demand response. Energy 82, 865–888 (2015)CrossRef Koltsaklis, N.E., Liu, P., Georgiadis, M.C.: An integrated stochastic multi-regional long-term energy planning model incorporating autonomous power systems and demand response. Energy 82, 865–888 (2015)CrossRef
27.
go back to reference Liu, Y., Sioshansi, R., Conejo, A.J.: Hierarchical clustering to find representative operating periods for capacity-expansion modeling. IEEE Trans. Power Syst. 33(3), 3029–3039 (2018)CrossRef Liu, Y., Sioshansi, R., Conejo, A.J.: Hierarchical clustering to find representative operating periods for capacity-expansion modeling. IEEE Trans. Power Syst. 33(3), 3029–3039 (2018)CrossRef
28.
go back to reference Merrick, J.H.: On representation of temporal variability in electricity capacity planning models. Energy Econ. 59, 261–274 (2016)CrossRef Merrick, J.H.: On representation of temporal variability in electricity capacity planning models. Energy Econ. 59, 261–274 (2016)CrossRef
29.
go back to reference Morales, J.M., Conejo, A.J., Pérez-Ruiz, J.: Economic valuation of reserves in power systems with high penetration of wind power. IEEE Trans. Power Syst. 24(2), 900–910 (2009)CrossRef Morales, J.M., Conejo, A.J., Pérez-Ruiz, J.: Economic valuation of reserves in power systems with high penetration of wind power. IEEE Trans. Power Syst. 24(2), 900–910 (2009)CrossRef
30.
go back to reference Munoz, F.D., Hobbs, B.F., Watson, J.P.: New bounding and decomposition approaches for MILP investment problems: multi-area transmission and generation planning under policy constraints. Eur. J. Oper. Res. 248(3), 888–898 (2016)MathSciNetMATHCrossRef Munoz, F.D., Hobbs, B.F., Watson, J.P.: New bounding and decomposition approaches for MILP investment problems: multi-area transmission and generation planning under policy constraints. Eur. J. Oper. Res. 248(3), 888–898 (2016)MathSciNetMATHCrossRef
31.
go back to reference Munoz, F.D., van der Weijde, A.H., Hobbs, B.F., Watson, J.P.: Does risk aversion affect transmission and generation planning? A Western North America case study. Energy Econ. 64, 213–225 (2017)CrossRef Munoz, F.D., van der Weijde, A.H., Hobbs, B.F., Watson, J.P.: Does risk aversion affect transmission and generation planning? A Western North America case study. Energy Econ. 64, 213–225 (2017)CrossRef
32.
go back to reference Murphy, F.H., Smeers, Y.: Generation capacity expansion in imperfectly competitive restructured electricity markets. Oper. Res. 53(4), 646–661 (2005)MATHCrossRef Murphy, F.H., Smeers, Y.: Generation capacity expansion in imperfectly competitive restructured electricity markets. Oper. Res. 53(4), 646–661 (2005)MATHCrossRef
33.
go back to reference Murphy, J.: Benders, Nested Benders and Stochastic Programming: An Intuitive Introduction. Cambridge University Engineering Department Technical Report (2013). arxiv:1312.3158 Murphy, J.: Benders, Nested Benders and Stochastic Programming: An Intuitive Introduction. Cambridge University Engineering Department Technical Report (2013). arxiv:​1312.​3158
34.
go back to reference Nasri, A., Kazempour, S.J., Conejo, A.J., Ghandhari, M.: Network-constrained AC unit commitment under uncertainty: a Benders decomposition approach. IEEE Trans. Power Syst. 31(1), 412–422 (2016)CrossRef Nasri, A., Kazempour, S.J., Conejo, A.J., Ghandhari, M.: Network-constrained AC unit commitment under uncertainty: a Benders decomposition approach. IEEE Trans. Power Syst. 31(1), 412–422 (2016)CrossRef
35.
go back to reference Nogales, A., Wogrin, S., Centeno, E.: Impact of technical operational details on generation expansion in oligopolistic power markets. IET Gen. Transmission Distrib. 10(9), 2118–2126 (2016)CrossRef Nogales, A., Wogrin, S., Centeno, E.: Impact of technical operational details on generation expansion in oligopolistic power markets. IET Gen. Transmission Distrib. 10(9), 2118–2126 (2016)CrossRef
36.
go back to reference Nweke, C.I., Leanez, F., Drayton, G.R., Kolhe, M.: Benefits of chronological optimization in capacity planning for electricity markets. In: IEEE power system technology (POWERCON), pp. 1–6 (2012) Nweke, C.I., Leanez, F., Drayton, G.R., Kolhe, M.: Benefits of chronological optimization in capacity planning for electricity markets. In: IEEE power system technology (POWERCON), pp. 1–6 (2012)
37.
go back to reference Ordoudis, C., Pinson, P., Morales, J.M., Zugno, M.: An updated version of the IEEE RTS 24-bus system for electricity market and power system operation studies. Technical University of Denmark (2016) Ordoudis, C., Pinson, P., Morales, J.M., Zugno, M.: An updated version of the IEEE RTS 24-bus system for electricity market and power system operation studies. Technical University of Denmark (2016)
38.
go back to reference Ostrowski, J., Anjos, M.F., Vannelli, A.: Tight mixed integer linear programming formulations for the unit commitment problem. IEEE Trans. Power Syst. 27(1), 39–46 (2012)CrossRef Ostrowski, J., Anjos, M.F., Vannelli, A.: Tight mixed integer linear programming formulations for the unit commitment problem. IEEE Trans. Power Syst. 27(1), 39–46 (2012)CrossRef
39.
go back to reference Palmer, K., Burtraw, D.: Cost-effectiveness of renewable electricity policies. Energy Econ. 27(6), 873–894 (2005)CrossRef Palmer, K., Burtraw, D.: Cost-effectiveness of renewable electricity policies. Energy Econ. 27(6), 873–894 (2005)CrossRef
40.
go back to reference Palmintier, B.: Flexibility in generation planning: Identifying key operating constraints. In: Power systems computation conference (PSCC), 2014, pp. 1–7. IEEE (2014) Palmintier, B.: Flexibility in generation planning: Identifying key operating constraints. In: Power systems computation conference (PSCC), 2014, pp. 1–7. IEEE (2014)
41.
go back to reference Palmintier, B., Webster, M.: Impact of unit commitment constraints on generation expansion planning with renewables. In: IEEE power and energy society general meeting, pp. 1–7 (2011) Palmintier, B., Webster, M.: Impact of unit commitment constraints on generation expansion planning with renewables. In: IEEE power and energy society general meeting, pp. 1–7 (2011)
42.
go back to reference Palmintier, B.S., Webster, M.D.: Impact of operational flexibility on electricity generation planning with renewable and carbon targets. IEEE Trans. Sustain. Energy 7(2), 672–684 (2016)CrossRef Palmintier, B.S., Webster, M.D.: Impact of operational flexibility on electricity generation planning with renewable and carbon targets. IEEE Trans. Sustain. Energy 7(2), 672–684 (2016)CrossRef
43.
go back to reference Papavasiliou, A., Oren, S.S., O’Neill, R.P.: Reserve requirements for wind power integration: a scenario-based stochastic programming framework. IEEE Trans. Power Syst. 26(4), 2197–2206 (2011)CrossRef Papavasiliou, A., Oren, S.S., O’Neill, R.P.: Reserve requirements for wind power integration: a scenario-based stochastic programming framework. IEEE Trans. Power Syst. 26(4), 2197–2206 (2011)CrossRef
44.
go back to reference Pina, A., Silva, C.A., Ferrão, P.: High-resolution modeling framework for planning electricity systems with high penetration of renewables. Appl. Energy 112, 215–223 (2013)CrossRef Pina, A., Silva, C.A., Ferrão, P.: High-resolution modeling framework for planning electricity systems with high penetration of renewables. Appl. Energy 112, 215–223 (2013)CrossRef
45.
go back to reference Pineda, S., Morales, J.M., Boomsma, T.K.: Impact of forecast errors on expansion planning of power systems with a renewables target. Eur. J. Oper. Res. 248(3), 1113–1122 (2016)MathSciNetMATHCrossRef Pineda, S., Morales, J.M., Boomsma, T.K.: Impact of forecast errors on expansion planning of power systems with a renewables target. Eur. J. Oper. Res. 248(3), 1113–1122 (2016)MathSciNetMATHCrossRef
46.
go back to reference Pinson, P., Mitridati, L., Ordoudis, C., Ostergaard, J.: Towards fully renewable energy systems: experience and trends in Denmark. CSEE J. Power Energy Syst. 3(1), 26–35 (2017)CrossRef Pinson, P., Mitridati, L., Ordoudis, C., Ostergaard, J.: Towards fully renewable energy systems: experience and trends in Denmark. CSEE J. Power Energy Syst. 3(1), 26–35 (2017)CrossRef
47.
go back to reference Poncelet, K., Delarue, E., Six, D., Duerinck, J., d’Haeseleer, W.: Impact of the level of temporal and operational detail in energy-system planning models. Appl. Energy 162, 631–643 (2016)CrossRef Poncelet, K., Delarue, E., Six, D., Duerinck, J., d’Haeseleer, W.: Impact of the level of temporal and operational detail in energy-system planning models. Appl. Energy 162, 631–643 (2016)CrossRef
48.
go back to reference Poncelet, K., Höschle, H., Delarue, E., Virag, A., d’Haeseleer, W.: Selecting representative days for capturing the implications of integrating intermittent renewables in generation expansion planning problems. IEEE Trans. Power Syst. 32(3), 1936–1948 (2017)CrossRef Poncelet, K., Höschle, H., Delarue, E., Virag, A., d’Haeseleer, W.: Selecting representative days for capturing the implications of integrating intermittent renewables in generation expansion planning problems. IEEE Trans. Power Syst. 32(3), 1936–1948 (2017)CrossRef
49.
go back to reference Puga, J.N.: The importance of combined cycle generating plants in integrating large levels of wind power generation. Electr. J. 23(7), 33–44 (2010)CrossRef Puga, J.N.: The importance of combined cycle generating plants in integrating large levels of wind power generation. Electr. J. 23(7), 33–44 (2010)CrossRef
51.
go back to reference Shortt, A., Kiviluoma, J., O’Malley, M.: Accommodating variability in generation planning. IEEE Trans. Power Syst. 28(1), 158–169 (2013)CrossRef Shortt, A., Kiviluoma, J., O’Malley, M.: Accommodating variability in generation planning. IEEE Trans. Power Syst. 28(1), 158–169 (2013)CrossRef
52.
go back to reference Shortt, A., O’Malley, M.: Impact of variable generation in generation resource planning models. In: IEEE power and energy society general meeting, pp. 1–6 (2010) Shortt, A., O’Malley, M.: Impact of variable generation in generation resource planning models. In: IEEE power and energy society general meeting, pp. 1–6 (2010)
53.
go back to reference Sifuentes, W.S., Vargas, A.: Hydrothermal scheduling using Benders decomposition: accelerating techniques. IEEE Trans. Power Syst. 22(3), 1351–1359 (2007)CrossRef Sifuentes, W.S., Vargas, A.: Hydrothermal scheduling using Benders decomposition: accelerating techniques. IEEE Trans. Power Syst. 22(3), 1351–1359 (2007)CrossRef
54.
go back to reference Singh, K.J., Philpott, A.B., Wood, R.K.: Dantzig-Wolfe decomposition for solving multistage stochastic capacity-planning problems. Oper. Res. 57(5), 1271–1286 (2009)MathSciNetMATHCrossRef Singh, K.J., Philpott, A.B., Wood, R.K.: Dantzig-Wolfe decomposition for solving multistage stochastic capacity-planning problems. Oper. Res. 57(5), 1271–1286 (2009)MathSciNetMATHCrossRef
55.
go back to reference Skar, C., Doorman, G., Tomasgard, A.: Large-scale power system planning using enhanced Benders decomposition. In: Power systems computation conference (PSCC), pp. 1–7 (2014) Skar, C., Doorman, G., Tomasgard, A.: Large-scale power system planning using enhanced Benders decomposition. In: Power systems computation conference (PSCC), pp. 1–7 (2014)
56.
go back to reference Staffell, I., Green, R.: Is there still merit in the merit order stack? The impact of dynamic constraints on optimal plant mix. IEEE Trans. Power Syst. 31(1), 43–53 (2016)CrossRef Staffell, I., Green, R.: Is there still merit in the merit order stack? The impact of dynamic constraints on optimal plant mix. IEEE Trans. Power Syst. 31(1), 43–53 (2016)CrossRef
57.
go back to reference Trukhanov, S., Ntaimo, L., Schaefer, A.: Adaptive multicut aggregation for two-stage stochastic linear programs with recourse. Eur. J. Oper. Res. 206(2), 395–406 (2010)MATHCrossRef Trukhanov, S., Ntaimo, L., Schaefer, A.: Adaptive multicut aggregation for two-stage stochastic linear programs with recourse. Eur. J. Oper. Res. 206(2), 395–406 (2010)MATHCrossRef
58.
go back to reference Upton Jr., G.B., Snyder, B.F.: Funding renewable energy: an analysis of renewable portfolio standards. Energy Econ. 66, 205–216 (2017)CrossRef Upton Jr., G.B., Snyder, B.F.: Funding renewable energy: an analysis of renewable portfolio standards. Energy Econ. 66, 205–216 (2017)CrossRef
59.
go back to reference van Stiphout, A., de Vos, K., Deconinck, G.: The impact of operating reserves on investment planning of renewable power systems. IEEE Trans. Power Syst. 32(1), 378–388 (2017)CrossRef van Stiphout, A., de Vos, K., Deconinck, G.: The impact of operating reserves on investment planning of renewable power systems. IEEE Trans. Power Syst. 32(1), 378–388 (2017)CrossRef
60.
go back to reference Villumsen, J.C., Bronmo, G., Philpott, A.B.: Line capacity expansion and transmission switching in power systems with large-scale wind power. IEEE Trans. Power Syst. 28(2), 731–739 (2013)CrossRef Villumsen, J.C., Bronmo, G., Philpott, A.B.: Line capacity expansion and transmission switching in power systems with large-scale wind power. IEEE Trans. Power Syst. 28(2), 731–739 (2013)CrossRef
61.
go back to reference Westner, G., Madlener, R.: Investment in new power generation under uncertainty: benefits of CHP vs. condensing plants in a copula-based analysis. Energy Econ. 34(1), 31–44 (2012)CrossRef Westner, G., Madlener, R.: Investment in new power generation under uncertainty: benefits of CHP vs. condensing plants in a copula-based analysis. Energy Econ. 34(1), 31–44 (2012)CrossRef
62.
go back to reference Wolf, C., Koberstein, A.: Dynamic sequencing and cut consolidation for the parallel hybrid-cut nested L-shaped method. Eur. J. Oper. Res. 230(1), 143–156 (2013)MathSciNetMATHCrossRef Wolf, C., Koberstein, A.: Dynamic sequencing and cut consolidation for the parallel hybrid-cut nested L-shaped method. Eur. J. Oper. Res. 230(1), 143–156 (2013)MathSciNetMATHCrossRef
63.
go back to reference You, F., Grossmann, I.E.: Multicut Benders decomposition algorithm for process supply chain planning under uncertainty. Ann. Oper. Res. 210(1), 191–211 (2013)MathSciNetMATHCrossRef You, F., Grossmann, I.E.: Multicut Benders decomposition algorithm for process supply chain planning under uncertainty. Ann. Oper. Res. 210(1), 191–211 (2013)MathSciNetMATHCrossRef
64.
go back to reference Zhang, Q., Cremer, J.L., Grossmann, I.E., Sundaramoorthy, A., Pinto, J.M.: Risk-based integrated production scheduling and electricity procurement for continuous power-intensive processes. Comput. Chem. Eng. 86, 90–105 (2016)CrossRef Zhang, Q., Cremer, J.L., Grossmann, I.E., Sundaramoorthy, A., Pinto, J.M.: Risk-based integrated production scheduling and electricity procurement for continuous power-intensive processes. Comput. Chem. Eng. 86, 90–105 (2016)CrossRef
65.
go back to reference Zverovich, V., Fábián, C.I., Ellison, E.F., Mitra, G.: A computational study of a solver system for processing two-stage stochastic LPs with enhanced Benders decomposition. Math. Program. Comput. 4(3), 211–238 (2012)MathSciNetMATHCrossRef Zverovich, V., Fábián, C.I., Ellison, E.F., Mitra, G.: A computational study of a solver system for processing two-stage stochastic LPs with enhanced Benders decomposition. Math. Program. Comput. 4(3), 211–238 (2012)MathSciNetMATHCrossRef
Metadata
Title
Do unit commitment constraints affect generation expansion planning? A scalable stochastic model
Authors
Anna Schwele
Jalal Kazempour
Pierre Pinson
Publication date
10-01-2019
Publisher
Springer Berlin Heidelberg
Published in
Energy Systems / Issue 2/2020
Print ISSN: 1868-3967
Electronic ISSN: 1868-3975
DOI
https://doi.org/10.1007/s12667-018-00321-z

Other articles of this Issue 2/2020

Energy Systems 2/2020 Go to the issue