Skip to main content
Top
Published in: Environmental Earth Sciences 9/2018

01-05-2018 | Original Article

Dominant micro-cracking direction and anisotropic property of rocks under uniaxial compression

Authors: Maiyong Jiang, Guan Rong, Jun Peng, Yi Li, Shunli Zhao

Published in: Environmental Earth Sciences | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To explore the relationship between the dominant direction of micro-cracks and the anisotropy, this research focuses on the micro-crack initiation and propagation mechanism and the anisotropic parameters evolution in the rock under uniaxial compression. Based on the maximum circumferential stress theory and the assumption of shear slip leading to the local tensile stress, the micro-crack initiation and propagation model is established, and the anisotropic parameters of rock is further explored. To verify the theory, the marble limestone, granite porphyry and granite are selected to conduct uniaxial compression experiment. It is indicated that the experimental results of elastic moduli and Poisson’s ratio are well consistent with theoretical analysis. Finally, the relationship between the dominant direction of original and secondary micro-cracks and the effect of the micro-cracks’ dominant direction on practical engineering are discussed. The results show that the dominant direction of micro-cracks is parallel to the maximum principal stress under uniaxial compression, which leads to the anisotropy of rock. With the increase of stress, the axial and transverse elastic moduli would decrease, while the extent of the decrease of axial elastic modulus is larger. The axial Poisson’s ratio would increase and the transverse Poisson’s ratio will decrease. Moreover, the Poisson’s ratio is more sensitive to the anisotropy caused by the dominant direction of micro-cracks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Aliakbar Golshani Y, Okui M, Oda T, Takemura (2006) A micromechanical model for brittle failure of rock and its relation to crack growth observed in triaxial compression tests of granite. Mech Mater 38:287–303CrossRef Aliakbar Golshani Y, Okui M, Oda T, Takemura (2006) A micromechanical model for brittle failure of rock and its relation to crack growth observed in triaxial compression tests of granite. Mech Mater 38:287–303CrossRef
go back to reference Arthur JRF, Chua KS, Dunstan T (1977) Induced anisotropy in a sand. Geotechnique 27(1):13–30CrossRef Arthur JRF, Chua KS, Dunstan T (1977) Induced anisotropy in a sand. Geotechnique 27(1):13–30CrossRef
go back to reference Bieniawski ZT (1967) Mechanism of brittle fracture of rock: Part I—theory of the fracture process. Int J Rock Mech Min Sci Geomech Abstr 4(4):395–404CrossRef Bieniawski ZT (1967) Mechanism of brittle fracture of rock: Part I—theory of the fracture process. Int J Rock Mech Min Sci Geomech Abstr 4(4):395–404CrossRef
go back to reference Chen CS, Pan E, Amadei B (1998) Fracture mechanics analysis of cracked discs of anisotropic rock using the boundary element method. Int J Rock Mech Min Sci 35(2):195–218CrossRef Chen CS, Pan E, Amadei B (1998) Fracture mechanics analysis of cracked discs of anisotropic rock using the boundary element method. Int J Rock Mech Min Sci 35(2):195–218CrossRef
go back to reference Costin LS (1983) A microcrack model for the deformation and failure of brittle rock. J Geophys Res Solid Earth 88(B11):9485–9492CrossRef Costin LS (1983) A microcrack model for the deformation and failure of brittle rock. J Geophys Res Solid Earth 88(B11):9485–9492CrossRef
go back to reference Costin L (1985) S. Damage mechanics in the post-failure regime. Mech Mater 4(2):149–160CrossRef Costin L (1985) S. Damage mechanics in the post-failure regime. Mech Mater 4(2):149–160CrossRef
go back to reference Ding WH, Chen HQ, Dang FN et al (2008) Study on dynamic damage process of concrete based on X-ray CT technique. In: 14th world conference on earthquake engineering, pp 1–6 Ding WH, Chen HQ, Dang FN et al (2008) Study on dynamic damage process of concrete based on X-ray CT technique. In: 14th world conference on earthquake engineering, pp 1–6
go back to reference Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85:519–527CrossRef Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85:519–527CrossRef
go back to reference Griffith AA (1920) The phenomenon of rupture and flow in solids. Philos Trans R Soc Lond A221:163–198 Griffith AA (1920) The phenomenon of rupture and flow in solids. Philos Trans R Soc Lond A221:163–198
go back to reference HeeKwang L, SeoKwon J (2011) An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int J Solids Struct 48:979–999CrossRef HeeKwang L, SeoKwon J (2011) An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int J Solids Struct 48:979–999CrossRef
go back to reference Hoek E (1964) Fracture of anisotropic rock. J S Afr Inst Min Metall 64(10):501–523 Hoek E (1964) Fracture of anisotropic rock. J S Afr Inst Min Metall 64(10):501–523
go back to reference Hu G, Liu J, Graham-Brady L et al (2015) A 3D mechanistic model for brittle materials containing evolving flaw distributions under dynamic multiaxial loading. J Mech Phys Solids 78:269–297CrossRef Hu G, Liu J, Graham-Brady L et al (2015) A 3D mechanistic model for brittle materials containing evolving flaw distributions under dynamic multiaxial loading. J Mech Phys Solids 78:269–297CrossRef
go back to reference Hudson JA, Harrison JP (1997) Engineering rock mechanics: an introduction to the principles. Pergamon, Oxford, pp 86–165 Hudson JA, Harrison JP (1997) Engineering rock mechanics: an introduction to the principles. Pergamon, Oxford, pp 86–165
go back to reference Irwin GR (1957) Analysis of stress and strains near the end of a crack extension force. J Appl Mech 24:361–364 Irwin GR (1957) Analysis of stress and strains near the end of a crack extension force. J Appl Mech 24:361–364
go back to reference Jaeger JC (1966) Brittle fracture of rocks. In: The 8th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association Jaeger JC (1966) Brittle fracture of rocks. In: The 8th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association
go back to reference Klopčič J, Logar J (2014) Effect of relative orientation of anisotropy planes to tunnel axis on the magnitude of tunnelling displacements. Int J Rock Mech Min Sci 71:235–248 Klopčič J, Logar J (2014) Effect of relative orientation of anisotropy planes to tunnel axis on the magnitude of tunnelling displacements. Int J Rock Mech Min Sci 71:235–248
go back to reference Kranz RL (1983) Microcracks in rocks: a review. Tectonophysics 100(1–3):449–480CrossRef Kranz RL (1983) Microcracks in rocks: a review. Tectonophysics 100(1–3):449–480CrossRef
go back to reference Liu B, Dao-Ying XI, Ning-Jie GE et al (2002) Anisotropy of poisson’s ratio in rock samples at different confining pressures. Chin J Geophys 45(6):923–933CrossRef Liu B, Dao-Ying XI, Ning-Jie GE et al (2002) Anisotropy of poisson’s ratio in rock samples at different confining pressures. Chin J Geophys 45(6):923–933CrossRef
go back to reference Li Y, Chen YF, Zhang GJ et al (2017) A numerical procedure for modeling the seepage field of water-sealed underground oil and gas storage caverns. Tunn Undergr Space Technol 66:56–63CrossRef Li Y, Chen YF, Zhang GJ et al (2017) A numerical procedure for modeling the seepage field of water-sealed underground oil and gas storage caverns. Tunn Undergr Space Technol 66:56–63CrossRef
go back to reference Lu Y, Wang L (2015) Numerical simulation of mining-induced fracture evolution and water flow in coal seam floor above a confined aquifer. Comput Geotech 67:157–171CrossRef Lu Y, Wang L (2015) Numerical simulation of mining-induced fracture evolution and water flow in coal seam floor above a confined aquifer. Comput Geotech 67:157–171CrossRef
go back to reference Pan YS, Wang XB, Li ZV (2002) Analysis of the strain softening size effect for rock specimens based on shear strain gradient plasticity theory. Int J Rock Mech Min Sci 39(6):801–805CrossRef Pan YS, Wang XB, Li ZV (2002) Analysis of the strain softening size effect for rock specimens based on shear strain gradient plasticity theory. Int J Rock Mech Min Sci 39(6):801–805CrossRef
go back to reference Park CH, Bobet A (2010) Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression. Eng Fract Mech 77:2727–2748CrossRef Park CH, Bobet A (2010) Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression. Eng Fract Mech 77:2727–2748CrossRef
go back to reference Shi-Yu LI, Tai-Ming HE, Xiang-Chu Y et al (2010) Introduction to rock fracture mechanics. University of Science and Technology of China Press, Hefei, pp 107–164 Shi-Yu LI, Tai-Ming HE, Xiang-Chu Y et al (2010) Introduction to rock fracture mechanics. University of Science and Technology of China Press, Hefei, pp 107–164
go back to reference Tang J (2014) Experimental study of static and dynamic moduli for anisotropic rock. Chin J Rock Mechan Eng 33(supp.1):3185–3191 Tang J (2014) Experimental study of static and dynamic moduli for anisotropic rock. Chin J Rock Mechan Eng 33(supp.1):3185–3191
go back to reference Walsh JB, Brace WF (1964) A fracture criterion for brittle anisotropic rock. J Geophys Res 69(16):3449–3456CrossRef Walsh JB, Brace WF (1964) A fracture criterion for brittle anisotropic rock. J Geophys Res 69(16):3449–3456CrossRef
go back to reference Xie H, Sun H, Ju Y et al (2001) Study on generation of rock fracture surfaces by using fractal interpolation. Int J Solids Struct 38(32):5765–5787CrossRef Xie H, Sun H, Ju Y et al (2001) Study on generation of rock fracture surfaces by using fractal interpolation. Int J Solids Struct 38(32):5765–5787CrossRef
go back to reference Wang XB (2006) Analysis of the post-peak Poisson’s ratio of rock specimens in uniaxial compression. Eng Mech 23(4):99–103 Wang XB (2006) Analysis of the post-peak Poisson’s ratio of rock specimens in uniaxial compression. Eng Mech 23(4):99–103
go back to reference Wang Y, Li X, Ben Y et al (2014) Prediction of initiation stress of dilation of brittle rocks. Chin J Rock Mechan Eng 33(4):737–746 (in Chinese) Wang Y, Li X, Ben Y et al (2014) Prediction of initiation stress of dilation of brittle rocks. Chin J Rock Mechan Eng 33(4):737–746 (in Chinese)
go back to reference Zhang XC, Wang JQ (2007) Research on the mechanism and prevention of rockburst at the Yinxin gold mine. J China Univ Min Technol 17(4):541–545CrossRef Zhang XC, Wang JQ (2007) Research on the mechanism and prevention of rockburst at the Yinxin gold mine. J China Univ Min Technol 17(4):541–545CrossRef
go back to reference Zhao XD, Zhang HX, Zhu WC (2014) Fracture evolution around pre-existing cylindrical cavities in brittle rocks under uniaxial compression. Trans Nonferrous Metals Soc China 24(3):806–815CrossRef Zhao XD, Zhang HX, Zhu WC (2014) Fracture evolution around pre-existing cylindrical cavities in brittle rocks under uniaxial compression. Trans Nonferrous Metals Soc China 24(3):806–815CrossRef
go back to reference Zhao XG, Cai M, Wang J et al (2015) Objective determination of crack initiation stress of brittle rocks under compression using ae measurement. Rock Mech Rock Eng 48(6):2473–2484CrossRef Zhao XG, Cai M, Wang J et al (2015) Objective determination of crack initiation stress of brittle rocks under compression using ae measurement. Rock Mech Rock Eng 48(6):2473–2484CrossRef
go back to reference Zhou JW, Xu WY, Yang XG (2010) A microcrack damage model for brittle rocks under uniaxial compression. Mech Res Commun 37(4):399–405CrossRef Zhou JW, Xu WY, Yang XG (2010) A microcrack damage model for brittle rocks under uniaxial compression. Mech Res Commun 37(4):399–405CrossRef
go back to reference Zhou J, Yang X, Yang Z et al (2013) Micromechanics damage modeling of brittle rock failure processes under compression. Int J Comput Methods 10(06):40–51CrossRef Zhou J, Yang X, Yang Z et al (2013) Micromechanics damage modeling of brittle rock failure processes under compression. Int J Comput Methods 10(06):40–51CrossRef
Metadata
Title
Dominant micro-cracking direction and anisotropic property of rocks under uniaxial compression
Authors
Maiyong Jiang
Guan Rong
Jun Peng
Yi Li
Shunli Zhao
Publication date
01-05-2018
Publisher
Springer Berlin Heidelberg
Published in
Environmental Earth Sciences / Issue 9/2018
Print ISSN: 1866-6280
Electronic ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-018-7527-y

Other articles of this Issue 9/2018

Environmental Earth Sciences 9/2018 Go to the issue