Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

12-02-2020 | Original Article | Issue 8/2020

International Journal of Machine Learning and Cybernetics 8/2020

Double feature selection algorithm based on low-rank sparse non-negative matrix factorization

Journal:
International Journal of Machine Learning and Cybernetics > Issue 8/2020
Authors:
Ronghua Shang, Jiuzheng Song, Licheng Jiao, Yangyang Li
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Recently, many feature selection algorithms based on non-negative matrix factorization have been proposed. However, many of these algorithms only consider unilateral information about global or local geometric structure normally. To this end, this paper proposes a new feature selection algorithm called double feature selection algorithm based on low-rank sparse non-negative matrix factorization (NMF-LRSR). Firstly, to reduce the dimensions effectively, NMF-LRSR uses non-negative matrix factorization as the framework to further reduce the dimension of the feature selection which is originally a dimension reduction problem. Secondly, the low-rank sparse representation with the self-representation is used to construct the graph, so both the global and intrinsic geometric structure information of the data could be taken into account in the process of feature selection, which makes full use of the information and makes the feature selection more accurate. In addition, the double feature selection theory is used to this paper, which makes the result of feature selection more accurate. NMF-LRSR is tested on the baseline and the other six algorithms in the literature and evaluated them on 11 publicly available benchmark datasets. Experimental results show that NMF-LRSR is more effective than the other six feature selection algorithms.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 8/2020

International Journal of Machine Learning and Cybernetics 8/2020 Go to the issue