Skip to main content
Top

15-09-2024 | Original Paper

Double skew cyclic codes over \(\mathbb {F}_q+v\mathbb {F}_q\)

Authors: Ashutosh Singh, Tulay Yildirim, Om Prakash

Published in: Applicable Algebra in Engineering, Communication and Computing

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to get a better code rate, this study focuses on the construction of double skew cyclic codes over the ring \(\textrm{R}= \mathbb {F}_q+v\mathbb {F}_q\) with \(v^2=v\), where q is a prime power. We investigate the generator polynomials, minimal spanning sets, generator matrices, and the dual codes over the ring \(\textrm{R}\). As an implementation, the obtained results are illustrated with some suitable examples. Here, we introduce a construction for new generator matrices and thus achieve codes with improved parameters compared to those available in the existing literature. Finally, we tabulate our obtained codes over the ring \(\textrm{R}\).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alahmadi, A., Islam, H., Prakash, O., Solé, P., Alkenani, A., Muthana, N., Hijazi, R.: New quantum codes from constacyclic codes over a non-chain ring. Quantum Inf. Process. 20(2), 1–17 (2021)MathSciNetCrossRefMATH Alahmadi, A., Islam, H., Prakash, O., Solé, P., Alkenani, A., Muthana, N., Hijazi, R.: New quantum codes from constacyclic codes over a non-chain ring. Quantum Inf. Process. 20(2), 1–17 (2021)MathSciNetCrossRefMATH
3.
go back to reference Aydogdu, I., Hesari, R.M., Samei, K.: Double skew cyclic codes over \(\mathbb{F}_q\). Comput. Appl. Math. 41(3), 126 (2022)CrossRefMATH Aydogdu, I., Hesari, R.M., Samei, K.: Double skew cyclic codes over \(\mathbb{F}_q\). Comput. Appl. Math. 41(3), 126 (2022)CrossRefMATH
4.
go back to reference Bathala, S., Seneviratne, P.: Some results on \(\mathbb{F} _4[v]\)-double cyclic codes. Comput. Appl. Math. 40(2), 1–17 (2021)CrossRefMATH Bathala, S., Seneviratne, P.: Some results on \(\mathbb{F} _4[v]\)-double cyclic codes. Comput. Appl. Math. 40(2), 1–17 (2021)CrossRefMATH
5.
go back to reference Bonnecaze, A., Udaya, P.: Cyclic codes and self dual codes over \(\mathbb{F} _2 +u\mathbb{F} _2\). IEEE Trans. Inform. Theory 45(4), 1250–1255 (1999)MathSciNetCrossRefMATH Bonnecaze, A., Udaya, P.: Cyclic codes and self dual codes over \(\mathbb{F} _2 +u\mathbb{F} _2\). IEEE Trans. Inform. Theory 45(4), 1250–1255 (1999)MathSciNetCrossRefMATH
6.
go back to reference Borges, J., Fernandez-Córdoba, C., Ten-Valls, R.: \(\mathbb{Z} _2\)-double cyclic codes. Des. Codes Cryptogr. 86(3), 463–479 (2018)MathSciNetCrossRefMATH Borges, J., Fernandez-Córdoba, C., Ten-Valls, R.: \(\mathbb{Z} _2\)-double cyclic codes. Des. Codes Cryptogr. 86(3), 463–479 (2018)MathSciNetCrossRefMATH
9.
go back to reference Boucher, D., Ulmer, F.: A note on the dual codes of module skew codes. In: Lecture Notes in Computer Science, vol. 7089, 230-243. Springer, Berlin (2011) Boucher, D., Ulmer, F.: A note on the dual codes of module skew codes. In: Lecture Notes in Computer Science, vol. 7089, 230-243. Springer, Berlin (2011)
10.
11.
go back to reference Diao, Y.L., Gao, J.: Double cyclic codes over finite fields. J. Shandong Univ. Tech. (Nat. Sci.) 31, 1672–6197 (2017)MATH Diao, Y.L., Gao, J.: Double cyclic codes over finite fields. J. Shandong Univ. Tech. (Nat. Sci.) 31, 1672–6197 (2017)MATH
12.
go back to reference Dougherty, S.T., Korban, A., şahinkaya, S.: Self-dual additive codes. Appl. Algebra Eng. Commun. Comput. 33(5), 569–586 (2022) Dougherty, S.T., Korban, A., şahinkaya, S.: Self-dual additive codes. Appl. Algebra Eng. Commun. Comput. 33(5), 569–586 (2022)
13.
go back to reference Gao, Y., Gao, J., Fu, F.W.: Quantum codes from cyclic codes over the ring \(\mathbb{F} _q+ v_1 \mathbb{F} _q+\cdots + v_r \mathbb{F} _q\). Appl. Algebra Eng. Commun. Comput. 30(2), 161–174 (2019)MathSciNetCrossRefMATH Gao, Y., Gao, J., Fu, F.W.: Quantum codes from cyclic codes over the ring \(\mathbb{F} _q+ v_1 \mathbb{F} _q+\cdots + v_r \mathbb{F} _q\). Appl. Algebra Eng. Commun. Comput. 30(2), 161–174 (2019)MathSciNetCrossRefMATH
16.
go back to reference Gursoy, F., Siap, I., Yildiz, B.: Construction of skew cyclic codes over \(\mathbb{F} _q+v\mathbb{F} _q\). Adv. Math. Commun. 8(3), 313–322 (2014)MathSciNetCrossRefMATH Gursoy, F., Siap, I., Yildiz, B.: Construction of skew cyclic codes over \(\mathbb{F} _q+v\mathbb{F} _q\). Adv. Math. Commun. 8(3), 313–322 (2014)MathSciNetCrossRefMATH
17.
go back to reference McDonald, BR.: Finite rings with identity. Marcel Dekker (1974)MATH McDonald, BR.: Finite rings with identity. Marcel Dekker (1974)MATH
19.
go back to reference Patel, S., Prakash, O., Islam, H.: Cyclic codes over \(M_4(\mathbb{F} _2+u\mathbb{F} _2)\). Cryptogr. Commun. 14(5), 1021–1034 (2022)MathSciNetCrossRefMATH Patel, S., Prakash, O., Islam, H.: Cyclic codes over \(M_4(\mathbb{F} _2+u\mathbb{F} _2)\). Cryptogr. Commun. 14(5), 1021–1034 (2022)MathSciNetCrossRefMATH
20.
go back to reference Siap, I., Abualrub, T., Aydin, N., Seneviratne, P.: Skew cyclic codes of arbitrary length. Int. J. Inf. Coding Theory 2(1), 10–20 (2011)MathSciNetMATH Siap, I., Abualrub, T., Aydin, N., Seneviratne, P.: Skew cyclic codes of arbitrary length. Int. J. Inf. Coding Theory 2(1), 10–20 (2011)MathSciNetMATH
21.
go back to reference Singh, A.K., Kewat, P.K.: On cyclic codes over the ring \(\mathbb{Z} _p[u]/ {\langle } u^k {\rangle }\). Des. Codes Cryptogr. 74(1), 1–13 (2015)MathSciNetCrossRefMATH Singh, A.K., Kewat, P.K.: On cyclic codes over the ring \(\mathbb{Z} _p[u]/ {\langle } u^k {\rangle }\). Des. Codes Cryptogr. 74(1), 1–13 (2015)MathSciNetCrossRefMATH
22.
go back to reference Wang, Y.K., Gao, J.: Double \(\lambda\)-constacyclic codes over finite chain rings. J. Shandong Univ. Tech. (Nat. Sci.) 32, 1672–6197 (2018)MATH Wang, Y.K., Gao, J.: Double \(\lambda\)-constacyclic codes over finite chain rings. J. Shandong Univ. Tech. (Nat. Sci.) 32, 1672–6197 (2018)MATH
24.
go back to reference Yildiz, B., Aydin, N.: On cyclic codes over \(\mathbb{Z} _4 + u\mathbb{Z} _4\) and \(\mathbb{Z} _4\) images. Int. J. Inf. Coding Theory 2(4), 226–237 (2014)MathSciNetMATH Yildiz, B., Aydin, N.: On cyclic codes over \(\mathbb{Z} _4 + u\mathbb{Z} _4\) and \(\mathbb{Z} _4\) images. Int. J. Inf. Coding Theory 2(4), 226–237 (2014)MathSciNetMATH
Metadata
Title
Double skew cyclic codes over
Authors
Ashutosh Singh
Tulay Yildirim
Om Prakash
Publication date
15-09-2024
Publisher
Springer Berlin Heidelberg
Published in
Applicable Algebra in Engineering, Communication and Computing
Print ISSN: 0938-1279
Electronic ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-024-00668-0

Premium Partner