Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

18-11-2019 | Original Article | Issue 6/2020

International Journal of Machine Learning and Cybernetics 6/2020

Drug sensitivity prediction framework using ensemble and multi-task learning

Journal:
International Journal of Machine Learning and Cybernetics > Issue 6/2020
Authors:
Aman Sharma, Rinkle Rani
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Radiation and hormone level targeted drug therapy are one of the most widely adopted treatment options for different types of cancer. But, due to genetic variations, cancer patients shows heterogeneity towards targeted drug therapies. In such a scenario precision medication necessitates the design of targeted drug therapy for each individual based on their genetic structure. Predictive modeling and drug response data of cancer cells are imperative in designing personalized cancer treatment. Recent advancement in cancer research has produced various pharmacogenomic databases, which further encourages ongoing research in precision medication. In this paper, we have proposed the drug sensitivity prediction framework using ensemble and multi-task learning. The proposed framework successfully maps non-linear relationships among anti-cancer drugs and have modeled their dependency. Further, the proposed framework is validated using publicly available real data sets-GDSC, CCLE, NCI-Dream. The proposed ensemble model shows quite promise in predicting anti-cancer drug response and has achieved lesser mean square error 3.28 (CGP), 0.49 (CCLE) and 0.54 (NCI-DREAM) in comparison to other existing counterparts.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 6/2020

International Journal of Machine Learning and Cybernetics 6/2020 Go to the issue