Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

29-01-2020 | Original Article | Issue 8/2020

International Journal of Machine Learning and Cybernetics 8/2020

Dual sparse learning via data augmentation for robust facial image classification

Journal:
International Journal of Machine Learning and Cybernetics > Issue 8/2020
Authors:
Shaoning Zeng, Bob Zhang, Yanghao Zhang, Jianping Gou
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Data augmentation has been utilized to improve the accuracy and robustness of face recognition algorithms. However, most of the previous studies focused on using the augmentation techniques to enlarge the feature set, while the diversity produced by the virtual samples lacked sufficient attention. In sparse dictionary learning-based face recognition, \(l_1\)-based sparse representation (SR) and SVD-based dictionary learning (DL) both have shown promising performance. How to utilize both of them in an enhanced training process by data augmentation is still unclear. This paper proposes a novel method that utilizes the sample diversity generated by data augmentation and integrates sparse representation with dictionary learning, to learn dual sparse features for robust face recognition. An additional feature set is created by applying sample augmentation via simply horizontal flipping of face images. The two sparse models, \(l_1\)-based SR and SVD-based DL, are integrated together using our new proposed objective function. Under two-level fusion of both data and classifiers, the diversity between two training sets is well learned and utilized, in three implementations, to obtain a robust face recognition. After conducting extensive experiments on some popular facial datasets, we demonstrate the proposed method can produce a higher classification accuracy than many state-of-the-art algorithms, and it can be considered as a promising option for image-based face recognition. Our code is released at GitHub.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 8/2020

International Journal of Machine Learning and Cybernetics 8/2020 Go to the issue