Skip to main content
Top

2020 | OriginalPaper | Chapter

2. Ductile Mode Cutting Mechanism

Authors : Kui Liu, Hao Wang, Xinquan Zhang

Published in: Ductile Mode Cutting of Brittle Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, ductile mode cutting mechanism of brittle material is analysed theoretically and systematically. The coexisting crack propagation and dislocation extension in the chip formation zone are examined based on an analysis of cutting geometry and forces in the cutting zone, both on Taylor’s dislocation hardening theory and strain gradient plasticity theory. Ductile chip formation is a result of large compressive stress and shear stress in cutting zone, of which shields the growth of pre-existing flaws by enhancing material’s yield strength and suppressing its stress intensity factor KI. Large compressive stress in cutting zone is obtained by satisfying two conditions: (a) very small undeformed chip thickness, and (b) undeformed chip thickness being smaller than tool cutting edge radius. Experimental verification shows that thrust force Ft is much larger than cutting force Fc in cutting of brittle material, which indicates that a large compressive stress is generated in cutting zone to enhance material’s yield strength by dislocation hardening and strain gradient, and shields the growth of pre-existing flaws by suppressing its stress intensity factor KI. Thereafter, ductile mode cutting of brittle material is achieved when two conditions are satisfied, such that work material is able to undertake a large cutting stress in cutting zone without fracturing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu K (2002) Ductile cutting for rapid prototyping of tungsten carbide tools. NUS Ph.D. thesis, Singapore Liu K (2002) Ductile cutting for rapid prototyping of tungsten carbide tools. NUS Ph.D. thesis, Singapore
2.
go back to reference Ngoi BKA, Sreejith PS (2000) Ductile regime finish machining – a review. Int J Adv Manuf Technol 16:547–550CrossRef Ngoi BKA, Sreejith PS (2000) Ductile regime finish machining – a review. Int J Adv Manuf Technol 16:547–550CrossRef
3.
go back to reference Neo KW, Kumar AS, Rahman M (2012) A review on the current research trends in ductile regime machining. Int J Adv Manuf Technol 63:465–480CrossRef Neo KW, Kumar AS, Rahman M (2012) A review on the current research trends in ductile regime machining. Int J Adv Manuf Technol 63:465–480CrossRef
4.
go back to reference Antwi EK, Liu K, Wang H (2018) A review on ductile mode cutting of brittle materials. Front Mech Eng 13:251–263CrossRef Antwi EK, Liu K, Wang H (2018) A review on ductile mode cutting of brittle materials. Front Mech Eng 13:251–263CrossRef
5.
go back to reference Hahn GT, Reid CN, Gilbert A (1963) The dislocation dynamics of plastic flow. In: Proceedings of the international production engineering research conference, Pittsburgh, USA, pp. 293–301 Hahn GT, Reid CN, Gilbert A (1963) The dislocation dynamics of plastic flow. In: Proceedings of the international production engineering research conference, Pittsburgh, USA, pp. 293–301
6.
go back to reference Rice JR, Thomsom R (1974) Ductile versus brittle behaviour of crystals. Philos Mag 29:73–97CrossRef Rice JR, Thomsom R (1974) Ductile versus brittle behaviour of crystals. Philos Mag 29:73–97CrossRef
7.
go back to reference Michot G, de Oliveira MAL, Champier G (1999) A model of dislocation multiplication at a crack tip influencing on the brittle to ductile transition. Mater Sci Eng A 272:83–89CrossRef Michot G, de Oliveira MAL, Champier G (1999) A model of dislocation multiplication at a crack tip influencing on the brittle to ductile transition. Mater Sci Eng A 272:83–89CrossRef
8.
go back to reference Hartmaier A, Gumbsch P (1999) The brittle-to-ductile transition and dislocation activity at crack tips. J Comput-Aided Mater Des 6:145–155CrossRef Hartmaier A, Gumbsch P (1999) The brittle-to-ductile transition and dislocation activity at crack tips. J Comput-Aided Mater Des 6:145–155CrossRef
9.
go back to reference Thomsom RM, Sinclair JE (1982) Mechanics of cracks screened by dislocation. Acta Metall 30:1325–1334CrossRef Thomsom RM, Sinclair JE (1982) Mechanics of cracks screened by dislocation. Acta Metall 30:1325–1334CrossRef
10.
go back to reference Ohr SM (1985) An electron microscope study of crack tip deformation and its impact on the dislocation theory of fracture. Mater Sci Eng 72:1–35CrossRef Ohr SM (1985) An electron microscope study of crack tip deformation and its impact on the dislocation theory of fracture. Mater Sci Eng 72:1–35CrossRef
11.
go back to reference Ferney BD, Hsia KJ (1999) The influence of multiple slip systems on the brittle-ductile transition in silicon. Mater Sci Eng A 272:422–430CrossRef Ferney BD, Hsia KJ (1999) The influence of multiple slip systems on the brittle-ductile transition in silicon. Mater Sci Eng A 272:422–430CrossRef
12.
go back to reference Samuels J, Roberts SG, Hirsch PB (1988) The brittle-to-ductile transition in silicon. Mater Sci Eng A 105(106):39–46CrossRef Samuels J, Roberts SG, Hirsch PB (1988) The brittle-to-ductile transition in silicon. Mater Sci Eng A 105(106):39–46CrossRef
13.
go back to reference Ebrahimi F, Shrivastava S (1997) Crack initiation and propagation in brittle-to-ductile transition regime of NiAl single crystals. Mater Sci Eng A 239–240:386–392CrossRef Ebrahimi F, Shrivastava S (1997) Crack initiation and propagation in brittle-to-ductile transition regime of NiAl single crystals. Mater Sci Eng A 239–240:386–392CrossRef
14.
go back to reference Imayev VM, Imayev RM, Salishchev GA (2000) On two stages of brittle-to-ductile transition in TiAl intermetallic. Intermet 8:1–6CrossRef Imayev VM, Imayev RM, Salishchev GA (2000) On two stages of brittle-to-ductile transition in TiAl intermetallic. Intermet 8:1–6CrossRef
15.
go back to reference Chen W, Ravichandran G (2000) Failure mode transition in ceramics under dynamic multiaxial compression. Int J Fract 101:141–159CrossRef Chen W, Ravichandran G (2000) Failure mode transition in ceramics under dynamic multiaxial compression. Int J Fract 101:141–159CrossRef
16.
go back to reference Blackley WS, Scattergood RO (1994) Chip topography for ductile-regime machining of germanium. ASME Trans J Eng Ind 116:263–266CrossRef Blackley WS, Scattergood RO (1994) Chip topography for ductile-regime machining of germanium. ASME Trans J Eng Ind 116:263–266CrossRef
17.
go back to reference Liu K, Li XP (2001) Modelling of ductile cutting of tungsten carbide. Trans NAMRI/SME 29:251–258 Liu K, Li XP (2001) Modelling of ductile cutting of tungsten carbide. Trans NAMRI/SME 29:251–258
18.
go back to reference Liu K, Li XP (2001) Ductile cutting of tungsten carbide. J Mater Process Technol 113:348–354CrossRef Liu K, Li XP (2001) Ductile cutting of tungsten carbide. J Mater Process Technol 113:348–354CrossRef
19.
go back to reference Broek D (1984) Elementary engineering fracture mechanics. Martinus Nijihoff Publishers, Springer, Netherlands, The HagueMATH Broek D (1984) Elementary engineering fracture mechanics. Martinus Nijihoff Publishers, Springer, Netherlands, The HagueMATH
20.
go back to reference Ewalds HL, Wanhill RJH (1989) Fracture mechanics. Edward Arnold, London Ewalds HL, Wanhill RJH (1989) Fracture mechanics. Edward Arnold, London
21.
go back to reference Jayatilaka A de S (1979) Fracture of engineering brittle materials. Appl Sci Lond:19–115 Jayatilaka A de S (1979) Fracture of engineering brittle materials. Appl Sci Lond:19–115
22.
go back to reference Meyers MA (1994) Dynamic behaviour of materials. Wiley, New York, pp 488–566CrossRef Meyers MA (1994) Dynamic behaviour of materials. Wiley, New York, pp 488–566CrossRef
23.
go back to reference Irwin GR (1957) Analysis of stress and strain near the end of a crack traversing a plate. ASME Trans J Appl Mech 24:361–364 Irwin GR (1957) Analysis of stress and strain near the end of a crack traversing a plate. ASME Trans J Appl Mech 24:361–364
24.
go back to reference Kendall K (1976) Interfacial cracking of a composite. J Mater Sci 11:1267–1269CrossRef Kendall K (1976) Interfacial cracking of a composite. J Mater Sci 11:1267–1269CrossRef
25.
go back to reference Pisarenko GS, Krasowsky AY, Vainshtock VA et al (1987) The combined micro- and macro-fracture mechanics approach to engineering problems of strength. Eng Fract Mech 28:539–554CrossRef Pisarenko GS, Krasowsky AY, Vainshtock VA et al (1987) The combined micro- and macro-fracture mechanics approach to engineering problems of strength. Eng Fract Mech 28:539–554CrossRef
26.
go back to reference Weertman J (1978) Fracture mechanics: a unified view for Griffith-Irwin-Orowan cracks. Acta Metall 26:1731–1738CrossRef Weertman J (1978) Fracture mechanics: a unified view for Griffith-Irwin-Orowan cracks. Acta Metall 26:1731–1738CrossRef
27.
go back to reference Pook LP (1985) The fatigue crack direction and threshold behavior of mild steel under mixed mode I and III loading. Int J Fatigue 7:21–30CrossRef Pook LP (1985) The fatigue crack direction and threshold behavior of mild steel under mixed mode I and III loading. Int J Fatigue 7:21–30CrossRef
28.
go back to reference Topper TH, Yu MT (1985) The effect of overloads on threshold and crack closure. Int J Fatigue 7:159–164CrossRef Topper TH, Yu MT (1985) The effect of overloads on threshold and crack closure. Int J Fatigue 7:159–164CrossRef
29.
go back to reference Strenkowski JS, Hiatt GD (1990) A technique for predicting the ductile regime in single point diamond turning of brittle materials. Fundam Issues Mach: Am Soc Mech Eng 43:67–80 Strenkowski JS, Hiatt GD (1990) A technique for predicting the ductile regime in single point diamond turning of brittle materials. Fundam Issues Mach: Am Soc Mech Eng 43:67–80
30.
go back to reference Smith A, Nurse A, Graham G et al (1996) Ultrasonic cutting – a fracture mechanics model. Ultrasonics 34:197–203CrossRef Smith A, Nurse A, Graham G et al (1996) Ultrasonic cutting – a fracture mechanics model. Ultrasonics 34:197–203CrossRef
31.
go back to reference Liu K, Li XP, Liang SY (2007) The mechanism of ductile chip formation in cutting of brittle materials. Int J Adv Manuf Technol 33:875–884CrossRef Liu K, Li XP, Liang SY (2007) The mechanism of ductile chip formation in cutting of brittle materials. Int J Adv Manuf Technol 33:875–884CrossRef
32.
go back to reference Cottrell AH (1953) Dislocations and plastic flow in crystals. The Clarendon Press, Oxford University Cottrell AH (1953) Dislocations and plastic flow in crystals. The Clarendon Press, Oxford University
33.
go back to reference Kovacs I, Zsoldos L (1973) Dislocations and plastic deformation. Pergamon Press, Oxford, pp 252–283CrossRef Kovacs I, Zsoldos L (1973) Dislocations and plastic deformation. Pergamon Press, Oxford, pp 252–283CrossRef
34.
go back to reference Fleck NA, Hutchinson JW (1997) Strain gradient plasticity. In: Hutchinson JW, Wu TY (eds) Advances in applied mechanics, vol 33. Academic Press, New York, pp 295–236 Fleck NA, Hutchinson JW (1997) Strain gradient plasticity. In: Hutchinson JW, Wu TY (eds) Advances in applied mechanics, vol 33. Academic Press, New York, pp 295–236
35.
go back to reference Gao H, Huang Y, Nix WD et al (1999) Mechanism-based strain gradient plasticity – I. Theory. J Mech Phys Solids 47:1239–1263MathSciNetCrossRef Gao H, Huang Y, Nix WD et al (1999) Mechanism-based strain gradient plasticity – I. Theory. J Mech Phys Solids 47:1239–1263MathSciNetCrossRef
36.
go back to reference Huang Y, Gao H, Nix WD et al (2000) Mechanism-based strain gradient plasticity – II Analysis. J Mech Phys Solids 48:99–128MathSciNetCrossRef Huang Y, Gao H, Nix WD et al (2000) Mechanism-based strain gradient plasticity – II Analysis. J Mech Phys Solids 48:99–128MathSciNetCrossRef
37.
go back to reference Shi MX, Huang Y, Hwang KC (2000) Plastic flow localization in mechanism-based strain gradient plasticity. Int J Mech Sci 42:2115–2131CrossRef Shi MX, Huang Y, Hwang KC (2000) Plastic flow localization in mechanism-based strain gradient plasticity. Int J Mech Sci 42:2115–2131CrossRef
38.
go back to reference Bifano T, Bierden PA (1997) Fixed-abrasive grinding of brittle hard disk substrates. Int J Mach Tools Manuf 37:935–946CrossRef Bifano T, Bierden PA (1997) Fixed-abrasive grinding of brittle hard disk substrates. Int J Mach Tools Manuf 37:935–946CrossRef
Metadata
Title
Ductile Mode Cutting Mechanism
Authors
Kui Liu
Hao Wang
Xinquan Zhang
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-32-9836-1_2

Premium Partners