Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2021

Open Access 01-12-2021 | Research

Dunkl-type generalization of the second kind beta operators via \((p,q)\)-calculus

Authors: Md. Nasiruzzaman, Abdullah Alotaibi, M. Mursaleen

Published in: Journal of Inequalities and Applications | Issue 1/2021

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The main purpose of this research article is to construct a Dunkl extension of \((p,q)\)-variant of Szász–Beta operators of the second kind by applying a new parameter. We obtain Korovkin-type approximation theorems, local approximations, and weighted approximations. Further, we study the rate of convergence by using the modulus of continuity, Lipschitz class and Peetre’s K-functionals.

1 Introduction and preliminaries

The q-analogues of Bernstein operators were independently given by Lupaş [25] and Phillips [42]. Consequently, Mursaleen et al. [33] applied the \((p,q)\)-integers and studied the approximation properties of Bernstein operators. Recently, a Dunkl-type generalization of Szász operators [47] via post-quantum calculus was studied by Alotaibi et al. [10]. For more details and research motivation in Dunkl-type generalizations, we mention here some research articles [13, 27, 34, 35, 3739, 45, 46]. Let \([s]_{p,q}\) be the \((p,q)\)-integer defined as
$$\begin{aligned}& [ s ] _{p,q}=p^{s-1}+qp^{s-3}+\cdots +q^{s-1}= \textstyle\begin{cases} \frac{p^{s}-q^{s}}{p-q} & (p\neq q\neq 1), \\ \frac{1-q^{s}}{1-q} & (p=1), \\ s & (p=q=1),\end{cases}\displaystyle \\& (au+bv)_{p,q}^{s}:=\sum_{\ell =0}^{s}p^{ \frac{(s-\ell )(s-\ell -1)}{2}}q^{\frac{\ell (\ell -1)}{2}} \begin{bmatrix} s \\ \ell \end{bmatrix} _{p,q}a^{s-\ell }b^{\ell }u^{s-\ell }v^{\ell }, \\& (1-u)_{p,q}^{s}=(1-u) (p-qu) \bigl(p^{2}-q^{2}u \bigr)\cdots \bigl(p^{s-1}-q^{s-1}u\bigr), \\& (u-y)_{p,q}^{s}=\textstyle\begin{cases} \prod_{j=0}^{s-1}(p^{j}u-q^{j}y) & \text{if }s\in \mathbb{N}, \\ 1 & \text{if }s=0.\end{cases}\displaystyle \end{aligned}$$
(1.1)
The \((p,q)\)-power basis is explained as
$$ (u\oplus v)_{p,q}^{s}=(u+v) (pu+qv) \bigl(p^{2}u+q^{2}v \bigr)\cdots \bigl(p^{s-1}u+q^{s-1}v\bigr). $$
Furthermore, the \((p,q)\)-analogues of the exponential function are defined by
$$ e_{p,q}(u)=\sum_{\ell =0}^{\infty }p^{\frac{\ell (\ell -1)}{2}} \frac{u^{\ell }}{[\ell ]_{p,q}!},\qquad E_{p,q}(u)=\sum _{\ell =0}^{ \infty }q^{\frac{\ell (\ell -1)}{2}}\frac{u^{\ell }}{[\ell ]_{p,q}!}. $$
Moreover, the \((p,q)\)-Dunkl analogue of the exponential function is defined by
$$\begin{aligned}& e_{\tau ,p,q}(u)=\sum_{\ell =0}^{\infty }p^{\frac{\ell (\ell -1)}{2}} \frac{u^{\ell }}{\gamma _{\tau ,p,q}(\ell )} , \end{aligned}$$
(1.2)
$$\begin{aligned}& \gamma _{\tau ,p,q}(\ell ) \\& \quad = \frac{\prod_{i=0}^{[\frac{\ell +1}{2}]-1}p^{2\tau (-1)^{i+1}+1} ( (p^{2})^{i}p^{2\tau +1}-(q^{2})^{i}q^{2\tau +1} ) \prod_{j=0}^{[\frac{\ell }{2}]-1}p^{2\tau (-1)^{j}+1} ( (p^{2})^{j}p^{2}-(q^{2})^{j}q^{2} ) }{(p-q)^{\ell }}. \end{aligned}$$
(1.3)
And a recursion identity is defined as
$$ \gamma _{\tau ,p,q}(\ell +1)= \frac{p^{2\tau (-1)^{\ell +1}+1}({p^{2\tau \theta _{\ell +1}+\ell +1}-q^{2\tau \theta _{\ell +1}+\ell +1}})}{(p-q)}\gamma _{\tau ,p,q}(\ell ), $$
(1.4)
where
$$ \theta _{\ell }= \textstyle\begin{cases} 0 & \text{for }\ell =2m, m=0,1,2,\dots , \\ 1 & \text{for }\ell =2m+1, m=0,1,2,\dots \end{cases} $$
(1.5)
For \(m=0,1,2,\dots s\), the number \([\frac{m}{2}]\) denotes the greatest integer function evaluated at \(m/2\).
In our demonstration, we let \(u\geq 0\) and \(C[0,\infty )\) be the class of all continuous functions on \([0,\infty )\). Recent investigation in [10, 38] defined the \((p,q)\)-Dunkl analogue of Szász operators by
$$ D_{s,p,q}(f;u)=\frac{1}{e_{\tau ,p,q}([s]_{p,q}u)}\sum_{\ell =0}^{ \infty }\frac{([s]_{p,q}u)^{\ell }}{\gamma _{\tau ,p,q}(\ell )}p^{ \frac{\ell (\ell -1)}{2}}f \biggl( \frac{p^{\ell +2\tau \theta _{\ell }}-q^{\ell +2\tau \theta _{\ell }}}{p^{\ell -1}(p^{s}-q^{s})} \biggr) . $$
(1.6)

2 Operators and basic estimates

In this section we construct a class of \((p,q)\)-variant of Szász–Beta operators of the second kind generated by an exponential function via Dunkl generalization in Definition 2.1. Such operators are a generalized version of the operators studied in [7, 22, 28, 29, 31, 36, 45].
Definition 2.1
Let \(f\in C_{\zeta }[0,\infty )=\{ f(t):f(t)=O(t^{\zeta }), t \rightarrow \infty , f\in C[0,\infty )\}\) and consider \(u\geq 0\), \(\zeta >s\), and \(s \in \mathbb{N}\). Then for all \(0< q< p\leq 1\), \(\tau >-\frac{1}{2}\), and \(\theta _{\ell }\) given by (1.5), we define
$$ \mathcal{P}_{s,p,q}^{\tau }(f;u)=\sum _{\ell =0}^{\infty } \mathcal{Q}_{s,p,q}(u) \frac{1}{\mathcal{B}_{p,q}(\ell +2\tau \theta _{\ell }+1,s)}\int _{0}^{\infty } \frac{t^{\ell +2\tau \theta _{\ell }}}{(1\oplus pt)_{p,q}^{\ell +2\tau \theta _{\ell }+s+1}}f(t) \,\mathrm{d}_{p,q}t, $$
(2.1)
where
$$ \mathcal{Q}_{s,p,q}(u)=\frac{1}{e_{\tau ,p,q}([s]_{p,q}u)} \frac{([s]_{p,q}u)^{\ell }}{\gamma _{\tau ,p,q}(\ell )}p^{ \frac{\ell (\ell -1)}{2}}, $$
and \(\mathcal{B}_{p,q}(\ell +2\tau \theta _{\ell }+1,s)\) is the Beta function of the second kind in post-quantum calculus defined by
$$ \mathcal{B}_{p,q}(\alpha ,\beta )= \int _{0}^{\infty } \frac{t^{\alpha -1}}{(1\oplus pt)_{p,q}^{\alpha +\beta }} \,\mathrm{d}_{p,q}t,\quad \alpha , \beta \in \mathbb{N,} $$
(2.2)
where a formula for the \((p,q)\)-Beta function is given by
$$ \mathcal{B}_{p,q}(\alpha ,\beta ) = \frac{[\alpha -1]_{p,q}}{p^{\alpha -1} [\beta ]_{p,q}} \mathcal{B}_{p,q}(\alpha -1,\beta +1), \quad \alpha , \beta \in \mathbb{N}. $$
(2.3)
Moreover, to obtain the basic estimates here, we use the following relations:
$$\begin{aligned}& {}[ \ell +1+2\tau \theta _{\ell }]_{p,q}=q[ \ell +2\tau \theta _{ \ell }]_{p,q}+p^{\ell +2\tau \theta _{\ell }}, \end{aligned}$$
(2.4)
$$\begin{aligned}& {}[ \ell +2+2\tau \theta _{\ell }]_{p,q}=q^{2}[ \ell +2\tau \theta _{ \ell }]_{p,q}+(p+q)p^{\ell +2\tau \theta _{\ell }}. \end{aligned}$$
(2.5)
For more related results on \((p,q)\)-analogues, we refer to [16, 8, 9, 11, 1421, 26, 30, 43, 44, 48] and also see [12, 32, 40], for example, if \(p=1\), the operators \(\mathcal{P}_{s,p,q}^{\tau }\) reduce to those considered recently (see [45]). We have the following inequalities.
Lemma 2.2
Let \(f(t)=1,t,t^{2}\). Then the operators \(\mathcal{P}_{s,p,q}^{\tau }(\,\cdot \,;\,\cdot \,)\) defined by (2.1) satisfy \(\mathcal{P}_{s,p,q}^{\tau }(1;u)=1\), and the following inequalities hold:
$$ \mathcal{P}_{s,p,q}^{\tau }(f;u)\leq \textstyle\begin{cases} \frac{{}[ s]_{p,q}}{[s-1]_{p,q}}u+\frac{1}{[s-1]_{p,q}} \quad \textit{for } f(t)=t, \\ \frac{{}[ s]_{p,q}^{2}}{[s-1]_{p,q}[s-2]_{p,q}}u^{2}+ \frac{[s]_{p,q}}{[s-1]_{p,q}[s-2]_{p,q}} ( 1+[2]_{p,q}+[1+2\tau ]_{p,q} ) u \\ \quad {}+\frac{[2]_{p,q}}{[s-1]_{p,q}[s-2]_{p,q}} \quad \textit{for } f(t)=t^{2},\end{cases} $$
(2.6)
and
$$ \mathcal{P}_{s,p,q}^{\tau }(f;u)\geq \textstyle\begin{cases} \frac{q[s]_{p,q}}{[s-1]_{p,q}}u+\frac{1}{[s-1]_{p,q}} \quad \textit{for } f(t)=t, \\ \frac{q^{3}[s]_{p,q}^{2}}{[s-1]_{p,q}[s-2]_{p,q}}u^{2} & \\ \quad {}+\frac{q[s]_{p,q}}{[s-1]_{p,q}[s-2]_{p,q}} (q+[2]_{p,q}+q^{2+2 \tau }[1-2\tau ]_{p,q} \frac{e_{\tau ,p,q} ( \frac{q}{p}[s]_{p,q}u ) }{e_{\tau ,p,q}([s]_{p,q}u)} )u & \\ \quad {}+\frac{[2]_{p,q}}{[s-1]_{p,q}[s-2]_{p,q}} \quad \textit{for } f(t)=t^{2}.\end{cases} $$
Proof
To prove the results of this lemma, we use (2.2)–(2.5). Take \(f(t)=1\). Then
$$\begin{aligned} \mathcal{P}_{s,p,q}^{\tau }(1;u) =&\sum _{\ell =0}^{\infty } \mathcal{Q}_{s,p,q}(u) \frac{1}{\mathcal{B}_{p,q}(\ell +2\tau \theta _{\ell }+1,s)}\int _{0}^{\infty } \frac{t^{\ell +2\tau \theta _{\ell }}}{(1\oplus pt)_{p,q}^{\ell +2\tau \theta _{\ell }+s+1}} \,\mathrm{d}_{p,q}t \\ =&\sum_{\ell =0}^{\infty }\mathcal{Q}_{s,p,q}(u) \frac{\mathcal{B}_{p,q}(\ell +2\tau \theta _{\ell }+1,s)}{\mathcal{B}_{p,q}(\ell +2\tau \theta _{\ell }+1,s)} =1. \end{aligned}$$
If \(f(t)=t\), then
$$\begin{aligned} \mathcal{P}_{s,p,q}^{\tau }(t;u) =&\sum _{\ell =0}^{\infty } \mathcal{Q}_{s,p,q}(u) \frac{1}{\mathcal{B}_{p,q}(\ell +2\tau \theta _{\ell }+1,s)}\int _{0}^{\infty } \frac{t^{\ell +2\tau \theta _{\ell }+1}}{(1\oplus pt)_{p,q}^{\ell +2\tau \theta _{\ell }+s+1}} \,\mathrm{d}_{p,q}t \\ =&\sum_{\ell =0}^{\infty }\mathcal{Q}_{s,p,q}(u) \frac{\mathcal{B}_{p,q}(\ell +2\tau \theta _{\ell }+2,s-1)}{\mathcal{B}_{p,q}(\ell +2\tau \theta _{\ell }+1,s)} \\ =&\frac{q}{[s-1]_{p,q}}\sum_{\ell =0}^{\infty } \mathcal{Q}_{s,p,q}(u) \frac{1}{p^{\ell +2\tau \theta _{\ell }+1}}[\ell +2\tau \theta _{\ell }]_{p,q}+\frac{1}{p[s-1]_{p,q}} \\ =&\frac{1}{p[s-1]_{p,q}}+\frac{q[s]_{p,q}}{p^{2}[s-1]_{p,q}}\sum_{ \ell =0}^{\infty } \mathcal{Q}_{s,p,q}(u) \biggl( \frac{p^{2\ell +2\tau \theta _{2\ell }}-q^{2\ell +2\tau \theta _{2\ell }}}{p^{2\ell -1}(p^{s}-q^{s})} \biggr) \\ &{}+\frac{q[s]_{p,q}}{p^{2+2\tau }[s-1]_{p,q}}\sum_{\ell =0}^{\infty }\mathcal{Q}_{s,p,q}(u) \biggl( \frac{p^{2\ell +1+2\tau \theta _{2\ell +1}}-q^{2\ell +1+2\tau \theta _{2\ell +1}}}{p^{2\ell }(p^{s}-q^{s})} \biggr). \end{aligned}$$
Clearly, we have
$$\begin{aligned} \mathcal{P}_{s,p,q}^{\tau }(t;u) \geq &\frac{1}{[s-1]_{p,q}}+ \frac{q[s]_{p,q}}{[s-1]_{p,q}}\sum_{\ell =0}^{\infty } \mathcal{Q}_{s,p,q}(u) \biggl(\frac{p^{\ell +2\tau \theta _{\ell }}-q^{\ell +2\tau \theta _{\ell }}}{p^{\ell -1}(p^{s}-q^{s})} \biggr) \\ =&\frac{1}{[s-1]_{p,q}}+\frac{q[s]_{p,q}}{[s-1]_{p,q}}D_{s,p,q}(t;u) \\ =&\frac{1}{[s-1]_{p,q}}+\frac{q[s]_{p,q}}{[s-1]_{p,q}}u \end{aligned}$$
and
$$ \mathcal{P}_{s,p,q}^{\ell ,\tau }(t;u)\leq \frac{1}{[s-1]_{p,q}}+ \frac{[s]_{p,q}}{[s-1]_{p,q}}u. $$
Similarly, for \(f(t)=t^{2}\), we have
$$\begin{aligned} \mathcal{P}_{s,p,q}^{\tau }\bigl(t^{2};u\bigr) =& \sum_{\ell =0}^{\infty } \mathcal{Q}_{s,p,q}(u) \frac{1}{\mathcal{B}_{p,q}(\ell +2\tau \theta _{\ell }+1,s)}\int _{0}^{\infty } \frac{t^{\ell +2\tau \theta _{\ell }+2}}{(1\oplus pt)_{p,q}^{\ell +2\tau \theta _{\ell }+s+1}} \,\mathrm{d}_{p,q}t \\ =&\sum_{\ell =0}^{\infty }\mathcal{Q}_{s,p,q}(u) \frac{\mathcal{B}_{p,q}(\ell +2\tau \theta _{\ell }+3,s-2)}{\mathcal{B}_{p,q}(\ell +2\tau \theta _{\ell }+1,s)} \\ =&\sum_{\ell =0}^{\infty }\mathcal{Q}_{s,p,q}(u) \frac{\mathcal{B}_{p,q}(\ell +2\tau \theta _{\ell }+3,s-2)}{\mathcal{B}_{p,q}(\ell +2\tau \theta _{\ell }+1,s)} \\ =&\frac{1}{[s-1]_{p,q}[s-2]_{p,q}}\\ &{}\times\sum_{\ell =0}^{\infty } \mathcal{Q}_{s,p,q}(u)\frac{1}{p^{3+2\ell +4\tau \theta _{\ell }+1}}[\ell +2 \tau \theta _{\ell }+1]_{p,q}[\ell +2\tau \theta _{\ell }+2]_{p,q} \\ =&\frac{q^{3}[s]_{p,q}^{2}}{[s-1]_{p,q}[s-2]_{p,q}}\sum_{\ell =0}^{ \infty }\mathcal{Q}_{s,p,q}(u)\frac{1}{p^{5+4\tau \theta _{\ell }}} \biggl( \frac{p^{\ell +2\tau \theta _{\ell }}-q^{\ell +2\tau \theta _{\ell }}}{p^{\ell -1}(p^{s}-q^{s})} \biggr)^{2} \\ &{}+\frac{q(p+2q)[s]_{p,q}}{[s-1]_{p,q}[s-2]_{p,q}}\sum_{\ell =0}^{ \infty }\mathcal{Q}_{s,p,q}(u)\frac{1}{p^{4+2\tau \theta _{\ell }}} \biggl( \frac{p^{\ell +2\tau \theta _{\ell }}-q^{\ell +2\tau \theta _{\ell }}}{p^{\ell -1}(p^{s}-q^{s})} \biggr) \\ &{}+\frac{(p+q)}{p^{3}[s-1]_{p,q}[s-2]_{p,q}}\sum_{\ell =0}^{\infty } \mathcal{Q}_{s,p,q}(u). \end{aligned}$$
Now by separating the even and odd terms and applying \(\theta _{\ell }\) from (1.5), i.e., taking \(\ell =2m\) and \(\ell =2m+1\) for all \(m=0,1,2,\dots \), we have
$$\begin{aligned} \mathcal{P}_{s,p,q}^{\tau }\bigl(t^{2};u\bigr) \geq &\frac{q^{3}[s]_{p,q}^{2}}{[s-1]_{p,q}[s-2]_{p,q}}\sum_{\ell =0}^{\infty } \mathcal{Q}_{s,p,q}(u) \biggl(\frac{p^{\ell +2\tau \theta _{\ell }}-q^{\ell +2\tau \theta _{\ell }}}{p^{\ell -1}(p^{s}-q^{s})} \biggr)^{2} \\ &{}+\frac{q(q+[2]_{p,q})[s]_{p,q}}{[s-1]_{p,q}[s-2]_{p,q}}\sum_{\ell =0}^{ \infty } \mathcal{Q}_{s,p,q}(u) \biggl( \frac{p^{\ell +2\tau \theta _{\ell }}-q^{\ell +2\tau \theta _{\ell }}}{p^{\ell -1}(p^{s}-q^{s})} \biggr) \\ &{}+\frac{[2]_{p,q}}{[s-1]_{p,q}[s-2]_{p,q}} \\ =&\frac{q^{3}[s]_{p,q}^{2}}{[s-1]_{p,q}[s-2]_{p,q}}D_{s,p,q}\bigl(t^{2};u\bigr)+ \frac{q(q+[2]_{p,q})[s]_{p,q}}{[s-1]_{p,q}[s-2]_{p,q}}D_{s,p,q}(t;u) \\ &{}+\frac{[2]_{p,q}}{[s-1]_{p,q}[s-2]_{p,q}}. \end{aligned}$$
Similarly,
$$\begin{aligned} \mathcal{P}_{s,p,q}^{\tau }\bigl(t^{2};u\bigr) \leq &\frac{[s]_{p,q}^{2}}{[s-1]_{p,q}[s-2]_{p,q}}D_{s,p,q}\bigl(t^{2};u\bigr)+ \frac{(1+[2]_{p,q})[s]_{p,q}}{[s-1]_{p,q}[s-2]_{p,q}}D_{s,p,q}(t;u) \\ &{}+\frac{[2]_{p,q}}{[s-1]_{p,q}[s-2]_{p,q}}. \end{aligned}$$
This completes the proof of Lemma 2.2. □
Lemma 2.3
Let \(\Phi _{j}=(t-u)^{j}\) for \(j=1,2\), then we have following inequalities:
$$\begin{aligned} 1.\quad \mathcal{P}_{s,p,q}^{\tau }(\Phi _{1};u) \leq & \biggl( \frac{{}[ s]_{p,q}}{[s-1]_{p,q}}-1 \biggr) u+\frac{1}{[s-1]_{p,q}}, \quad \textit{for } s>1, s \in \mathbb{N,} \\ 2.\quad \mathcal{P}_{s,p,q}^{\tau }(\Phi _{2};u) \leq & {\biggl(} \frac{{}[ s]_{p,q}^{2}}{[s-1]_{p,q}[s-2]_{p,q}}- \frac{2[s]_{p,q}}{[s-1]_{p,q}}+1 { \biggr)} u^{2} \\ &{}+\frac{1}{[s-1]_{p,q}} \biggl(\frac{[s]_{p,q}}{[s-2]_{p,q}} \bigl(1+[2]_{p,q}+[1+2 \tau ]_{p,q} \bigr)-2 \biggr)u \\ &{}+\frac{[2]_{p,q}}{[s-1]_{p,q}[s-2]_{p,q}}, \quad \textit{for } s>2, s \in \mathbb{N}. \end{aligned}$$

3 Approximation results

Let us denote by \(C_{B}[0,\infty )\) the set of all bounded and continuous functions defined on \([0,\infty )\), equipped with the norm \(\| f\| _{C_{B}}=\sup_{u\geq 0}| f(u)| \). We write
$$\begin{aligned}& \mathcal{L}:=\biggl\{ f:\lim_{u\rightarrow \infty }\frac{f(u)}{1+u^{2}}\text{ exits}\biggr\} , \\& B_{\sigma }[0,\infty ):= \bigl\{ f: \bigl\vert f(u) \bigr\vert \leq \mathcal{M}_{f}\sigma (u) \bigr\} , \end{aligned}$$
where \(\mathcal{M}_{f}\) is a constant depending on f, and σ is the weight function with \(\sigma (u)=1+u^{2}\). Moreover,
$$\begin{aligned}& C_{\sigma }[0,\infty ):=B_{\sigma }[0,\infty )\cap C[0,\infty ), \\& C_{\sigma }^{k}[0,\infty ):= \biggl\{ f:f\in C_{\sigma }[0,\infty ) \text{ and }\lim _{u\rightarrow \infty }\frac{f(u)}{\sigma (u)}=k< \infty \biggr\} . \end{aligned}$$
Note that \(C_{\sigma }[0,\infty )\) is a normed space with the norm given by \(\|f\|_{\sigma }=\sup_{u\geq 0 }\frac{|f(u)|}{\sigma (u)}\).
Theorem 3.1
Take the sequences of positive numbers \(q=q_{s}\), \(p=p_{s}\) satisfying \(q_{s}\in (0,1)\), \(p_{s}\in (q_{s},1]\) such that \(\lim_{s\rightarrow \infty }q_{s}= 1\), \(\lim_{s\rightarrow \infty }p_{s}= 1\). Then, \(\mathcal{P}_{s,p_{s},q_{s}}^{\tau }\) is uniformly convergent on each compact subset of \(\ [0,\infty )\) and such that
$$ \lim_{s\rightarrow \infty }\mathcal{P}_{s,p_{s},q_{s}}^{\tau }(f;u)=f(u), $$
where \(f\in C[0,\infty )\cap \mathcal{L}\).
Proof
To prove the uniform convergence on each compact subset of \([0,\infty )\), it is obvious from the well-known Korovkin’s theorem [23] that \(\lim_{s\rightarrow \infty }\mathcal{P}_{s,p_{s},q_{s}}^{\ell ,\tau } (t^{\eta };u )=u^{\eta }\) for \(\eta =0,1,2\). Whenever, \(q_{s}= 1 \), \(p_{s}=1\) as \(s\rightarrow \infty \), then clearly for all \(i=1,2\) we have \(\frac{1}{[s-i]_{p_{s},q_{s}}}\rightarrow 0\), \(\frac{[s]_{p_{s},q_{s}}}{[s-i]_{p_{s},q_{s}}}\rightarrow 1\), which imply that
$$ \lim_{s\rightarrow \infty }\mathcal{P}_{s,p_{s},q_{s}}^{\tau }(1;u)=1, \qquad \lim_{s\rightarrow \infty }\mathcal{P}_{s,p_{s},q_{s}}^{\tau }(t;u)=u, \qquad \lim_{s\rightarrow \infty }\mathcal{P}_{s,p_{s},q_{s}}^{ \tau } \bigl(t^{2};u\bigr)=u^{2}. $$
 □
Theorem 3.2
For each \(f\in C_{\sigma }^{k}[0,\infty )\), consider the sequences of positive numbers \(0< q_{s}< p_{s}\leq 1\) such that \(\lim_{s\rightarrow \infty }q_{s}=1\), \(\lim_{s\rightarrow \infty }p_{s}=1\). Then the operators \(\mathcal{P}_{s,p_{s},q_{s}}^{\tau }\) satisfy
$$ \lim_{s\rightarrow \infty } \bigl\Vert \mathcal{P}_{s,p_{s},q_{s}}^{\tau }(f)-f \bigr\Vert _{\sigma }=0. $$
(3.1)
Proof
We take \(f(t)=t^{\eta }\) with \(\eta =0,1,2\). From Theorem 3.1, since \(\mathcal{P}_{s,p_{s},q_{s}}^{\tau }(t^{\eta };u)\) is uniformly convergent to \(u^{\eta }\) for all \(\eta =0,1,2\), and applying Lemma 2.2, we conclude that
$$ \lim_{s\rightarrow \infty } \bigl\Vert \mathcal{P}_{s,p_{s},q_{s}}^{\tau } ( 1 ) -1 \bigr\Vert _{\sigma }=0. $$
(3.2)
For \(\eta =1\),
$$\begin{aligned} \bigl\Vert \mathcal{P}_{s,p_{s},q_{s}}^{\tau } ( t ) -u \bigr\Vert _{\sigma } & =\sup_{u\geq 0} \frac{ \vert \mathcal{P}_{s,p_{s},q_{s}}^{\tau }(t;u)-u \vert }{1+u^{2}} \\ & \leq \biggl( \frac{{}[ s]_{p_{s},q_{s}}}{[s-1]_{p_{s},q_{s}}}-1 \biggr) \sup _{u\geq 0}\frac{u}{1+u}+ \frac{1}{[s-1]_{p_{s},q_{s}}}\sup_{u\geq 0}\frac{1}{1+u}. \end{aligned}$$
Then
$$ \lim_{s\rightarrow \infty } \bigl\Vert \mathcal{P}_{s,p_{s},q_{s}}^{\tau } ( t ) -u \bigr\Vert _{\sigma }=0. $$
(3.3)
Similarly, if we take \(\eta =2\), then
$$\begin{aligned}& \begin{aligned} \bigl\Vert \mathcal{P}_{s,p_{s},q_{s}}^{\tau } \bigl( t^{2} \bigr) -u^{2} \bigr\Vert _{\sigma } ={}& \sup_{u\geq 0} \frac{ \vert \mathcal{P}_{s,p_{s},q_{s}}^{\tau }(t^{2};u)-u^{2} \vert }{1+u^{2}} \\ \leq {}& \biggl( \frac{[s]_{p_{s},q_{s}}^{2}}{[s-1]_{p_{s},q_{s}}[s-2]_{p,q}}-1 \biggr)\sup _{u\geq 0}\frac{u^{2}}{1+u^{2}} \\ &{}+\frac{[s]_{p_{s},q_{s}}}{[s-1]_{p_{s},q_{s}}[s-2]_{p_{s},q_{s}}} \bigl(1+[2]_{p_{s},q_{s}}+[1+2\tau ]_{p_{s},q_{s}} \bigr)\sup_{u\geq 0} \frac{u}{1+u^{2}} \\ &{}+\frac{[2]_{p_{s},q_{s}}}{[s-1]_{p_{s},q_{s}}[s-2]_{p,q}}\sup_{u \geq 0}\frac{1}{1+u^{2}}, \end{aligned} \\& \lim_{s\rightarrow \infty } \bigl\Vert \mathcal{P}_{s,p_{s},q_{s}}^{\tau } \bigl( t^{2} \bigr) -u^{2} \bigr\Vert _{\sigma }=0. \end{aligned}$$
(3.4)
This completes the proof. □
Let
$$ \omega _{\mu }(f;\delta )=\sup_{ \vert t-u \vert \leq \delta }\sup _{u,t \in {}[ 0,\mu ]} \bigl\vert f(t)-f(u) \bigr\vert . $$
(3.5)
It is obvious that \(\lim_{\delta \rightarrow 0+}\omega _{\mu }(f;\delta )=0\) and for \(f\in C[0,\infty )\),
$$ \bigl\vert f(t)-f(u) \bigr\vert \leq \biggl( \frac{ \vert t-u \vert }{\delta }+1 \biggr) \omega _{\mu }(f;\delta ). $$
(3.6)
Theorem 3.3
Let \(f\in C_{\sigma }[0,\infty )\), and \(0< q_{s}< p_{s}\leq 1 \) be such that \(\lim_{s\rightarrow \infty } q_{s}= 1\), \(\lim_{s\rightarrow \infty }p_{s}= 1\). Moreover, suppose \(\omega _{\mu }(f;\delta )\) is defined by (3.5) on the interval \([0,\mu +1]\subset {}[ 0,\infty )\), for \(\mu >0\). Then for every \(s>2\), we get
$$ \bigl\vert \mathcal{P}_{s,p_{s},q_{s}}^{\tau }(f;u)-f(u) \bigr\vert \leq 2\omega _{\mu +1} \bigl(f;\delta _{s}(u) \bigr)+6 \mathcal{C}_{f}\bigl(1+ \mu ^{2}\bigr) \bigl( \delta _{s}(u) \bigr) ^{2}, $$
where \(\mathcal{C}_{f}\) is a constant depending only on f and \(\delta _{s}(u)=\sqrt{\mathcal{P}_{s,p_{s},q_{s}}^{\tau } (\Phi _{2};u )}\).
Proof
For \(u\in {}[ 0,\mu ]\) and \(t\leq \mu +1\), with \(\mu >0\), we have
$$ \bigl\vert f(t)-f(u) \bigr\vert \leq \mathcal{C}_{f} \bigl( 2+u^{2}+t^{2} \bigr) \leq 6\mathcal{C}_{f} \bigl(1+\mu ^{2}\bigr) (t-u)^{2}. $$
(3.7)
Furthermore, for any \(\delta >0\), \(u\in {}[ 0,\mu ]\), and \(t>\mu +1\), with \(\mu >0\),
$$ \bigl\vert f(t)-f(u) \bigr\vert \leq \omega _{\mu +1}\bigl(f; \vert t-u \vert \bigr) \leq \biggl( 1+ \frac{ \vert t-u \vert }{\delta } \biggr)\omega _{ \mu +1}(f;\delta ). $$
(3.8)
From (3.7) and (3.8), we have
$$ \bigl\vert f(t)-f(u) \bigr\vert \leq 6 \mathcal{C}_{f}\bigl(1+\mu ^{2}\bigr) (t-u)^{2}+ \biggl( 1+\frac{ \vert t-u \vert }{\delta } \biggr)\omega _{\mu +1}(f; \delta ). $$
(3.9)
Applying operators \(\mathcal{P}_{s,p_{s},q_{s}}^{\tau }\) and the well-known Cauchy–Schwartz inequality, we have
$$\begin{aligned} \mathcal{P}_{s,p_{s},q_{s}}^{\tau } \bigl( \bigl\vert f(t)-f(u) \bigr\vert ;u \bigr) \leq &6\mathcal{C}_{f}\bigl(1+\mu ^{2}\bigr)\mathcal{P}_{s,p_{s},q_{s}}^{ \tau } ( \Phi _{2};u ) \\ &{}+\mathcal{P}_{s,p_{s},q_{s}}^{\tau } \biggl( 1+ \frac{ \vert t-u \vert }{\delta };u \biggr) \omega _{\mu +1}(f;\delta ). \end{aligned}$$
Moreover, for any \(g\in C_{\sigma }[0,\infty )\), we know
$$\begin{aligned} \mathcal{P}_{s,p_{s},q_{s}}^{\tau }(g;u)-g(u) =&\mathcal{P}_{s,p_{s},q_{s}}^{\tau }(g;u)-g(u) \mathcal{P}_{s,p_{s},q_{s}}^{\tau }(1;u) \\ =&\mathcal{P}_{s,p_{s},q_{s}}^{\tau } \bigl(g(t)-g(u);u \bigr) \\ \leq &\mathcal{P}_{s,p_{s},q_{s}}^{\tau } \bigl( \bigl\vert g(t)-g(u) \bigr\vert ;u \bigr). \end{aligned}$$
Therefore,
$$\begin{aligned} \bigl\vert \mathcal{P}_{s,p_{s},q_{s}}^{\tau }(f;u)-f(u) \bigr\vert \leq &6\mathcal{C}_{f}\bigl(1+\mu ^{2}\bigr)\mathcal{P}_{s,p_{s},q_{s}}^{\tau }(t-u)^{2} \\ &{}+ \biggl(1+\frac{1}{\delta }\mathcal{P}_{s,p_{s},q_{s}}^{\tau } \bigl( \vert t-u \vert ;u \bigr) \biggr)\omega _{\mu +1}(f;\delta ) \\ \leq &6\mathcal{C}_{f}\bigl(1+\mu ^{2}\bigr) \mathcal{P}_{s,p_{s},q_{s}}^{\tau } (\Phi _{2};u ) \\ &{}+ \biggl(1+\frac{1}{\delta }\mathcal{P}_{s,p_{s},q_{s}}^{\tau } ( \Phi _{2};u )^{\frac{1}{2}} \biggr)\omega _{\mu +1}(f; \delta ), \end{aligned}$$
where
$$ \mathcal{P}_{s,p_{s},q_{s}}^{\tau } \bigl( \vert t-u \vert ;u \bigr)\leq \mathcal{P}_{s,p_{s},q_{s}}^{\tau } (1;u )^{\frac{1}{2}}\mathcal{P}_{s,p_{s},q_{s}}^{\tau } \bigl((t-u)^{2};u \bigr)^{\frac{1}{2}}= \mathcal{P}_{s,p_{s},q_{s}}^{\tau } (\Phi _{2};u )^{\frac{1}{2}}. $$
Finally, if we choose \(\delta =\delta _{s}(u)=\sqrt{\mathcal{P}_{s,p_{s},q_{s}}^{\tau } (\Phi _{2};u )}\), then we get the desired result. □

4 Rate of convergence

In 1963, to measure the smoothness, a mathematical formula of a certain functional was given by Peetre [41]. For all \(\delta >0\) and \(f\in C[0,\infty )\), Peetre defined the K-functional, which we write as \(K_{2}(f;\delta )\). The formulas below give its definition, as well as a bound for some constant \(\mathcal{C}>0\) and the second-order modulus of continuity \(\omega _{2}(f;\delta )\) defined as follows:
$$\begin{aligned}& K_{2}(f;\delta )=\inf_{u\geq 0} \bigl\{ \bigl( \Vert f-\psi \Vert _{C_{B}[0, \infty )}+\delta \bigl\Vert \psi ^{\prime \prime } \bigr\Vert _{C_{B}[0,\infty )} \bigr) :\psi \in C_{B}^{2}[0, \infty ) \bigr\} , \end{aligned}$$
(4.1)
$$\begin{aligned}& K_{2}(f;\delta )\leq \mathcal{C}\bigl\{ \omega _{2}(f; \sqrt{\delta })+\min (1, \delta ) \Vert f \Vert _{C_{B}[0,\infty )}\bigr\} , \\& \omega _{2}(f;\delta )=\sup_{0< v< \delta }\sup _{u\geq 0} \bigl\vert f(u+2v)-2f(u+v)+f(u) \bigr\vert . \end{aligned}$$
(4.2)
Theorem 4.1
Let \(q=q_{s}\), \(p=p_{s}\) with \(q_{s}\in (0,1)\), \(p_{s}\in (q_{s},1] \) and \(\mathcal{R}_{s,p,q}^{\tau }(f;u)=\mathcal{P}_{s,p,q}^{\tau }(f;u)+f(u)-f ( \frac{[s]_{p,q}u+1}{[s-1]_{p,q}} ) \). Then, for every \(\psi \in C_{B}^{2}[0,\infty )\) and \(s>2\), we have
$$ \bigl\vert \mathcal{R}_{s,p_{s},q_{s}}^{\tau }(\psi ;u)-\psi (u) \bigr\vert \leq \chi _{n}(u) \bigl\Vert \psi ^{\prime \prime } \bigr\Vert , $$
where \(\chi _{n}(u)=\delta _{s}^{2}(u)+ ( \mathcal{P}_{s,p,q}(\Phi _{1};u) ) ^{2}\), in which \(\delta _{s}(u)\) is defined in Theorem 3.3and \(\mathcal{P}_{s,p,q}(\Phi _{1};u)\) is defined by Lemma 2.3.
Proof
Let \(\psi \in C_{B}^{2}[0,\infty )\). We easily get \(\mathcal{R}_{s,p_{s},q_{s}}^{\tau }(1;u)=1\) and
$$ \mathcal{R}_{s,p_{s},q_{s}}^{\tau }(t;u)=\mathcal{P}_{s,p_{s},q_{s}}^{ \tau }(t;u)+u- \biggl(\frac{[s]_{p_{s},q_{s}}u+1}{[s-1]_{p_{s},q_{s}}} \biggr)=u. $$
Also
$$\begin{aligned}& \bigl\Vert \mathcal{P}_{s,p_{s},q_{s}}^{\tau }(f;u) \bigr\Vert \leq \Vert f \Vert , \\& \bigl\vert \mathcal{R}_{s,p_{s},q_{s}}^{\tau }(f;u) \bigr\vert \leq \bigl\vert \mathcal{P}_{s,p_{s},q_{s}}^{\tau }(f;u) \bigr\vert + \bigl\vert f(u) \bigr\vert - \biggl\vert f \biggl( \frac{[s]_{p_{s},q_{s}}u+1}{[s-1]_{p_{s},q_{s}}} \biggr) \biggr\vert \leq 3 \Vert f \Vert . \end{aligned}$$
(4.3)
From the Taylor series expansion, we have
$$ \psi (t)=\psi (u)+(t-u)\psi ^{\prime }(u)+ \int _{u}^{t}(t-\alpha ) \psi ^{\prime \prime }(\alpha )\,\mathrm{d}\alpha . $$
Applying the operator \(\mathcal{R}_{s,p_{s},q_{s}}^{\tau }\), we conclude that
$$\begin{aligned}& \begin{aligned} \mathcal{R}_{s,p_{s},q_{s}}^{\tau }(\psi ;u)-\psi (u)={}&\psi ^{ \prime }(u)\mathcal{R}_{s,p_{s},q_{s}}^{\tau }(t-u;u)+ \mathcal{R}_{s,p_{s},q_{s}}^{ \tau } \biggl( \int _{u}^{t}(t-\alpha )\psi ^{\prime \prime }( \alpha )\, \mathrm{d}\alpha ;u \biggr) \\ ={}&\mathcal{R}_{s,p_{s},q_{s}}^{\tau } \biggl( \int _{u}^{t}(t-\alpha ) \psi ^{\prime \prime }(\alpha )\,\mathrm{d}\alpha ;u \biggr) \\ ={}&\mathcal{P}_{s,p_{s},q_{s}}^{\tau } \biggl( \int _{u}^{t}(t-\alpha ) \psi ^{\prime \prime }(\alpha )\,\mathrm{d}\alpha ;u \biggr) \\ &{}- \int _{u}^{\frac{[s]_{p_{s},q_{s}}u+1}{[s-1]_{p_{s},q_{s}}}} \biggl( \frac{[s]_{p_{s},q_{s}}u+1}{[s-1]_{p_{s},q_{s}}}- \alpha \biggr)\psi ^{ \prime \prime }(\alpha )\,\mathrm{d}\alpha \end{aligned}\\& \begin{aligned} \bigl\vert \mathcal{R}_{s,p_{s},q_{s}}^{\tau }(\psi ;u)-\psi (u) \bigr\vert \leq{} & \biggl\vert \mathcal{P}_{s,p_{s},q_{s}}^{\tau } \biggl( \int _{u}^{t}(t- \alpha )\psi ^{\prime \prime }(\alpha )\,\mathrm{d}\alpha ;u \biggr) \biggr\vert \\ &{}+ \biggl\vert \int _{u}^{ \frac{[s]_{p_{s},q_{s}}u+1}{[s-1]_{p_{s},q_{s}}}} \biggl(\frac{[s]_{p_{s},q_{s}}u+1}{[s-1]_{p_{s},q_{s}}}-\alpha \biggr)\psi ^{ \prime \prime }(\alpha )\,\mathrm{d} \alpha \biggr\vert . \end{aligned} \end{aligned}$$
Since
$$ \biggl\vert \int _{u}^{t}(t-\alpha )\psi ^{\prime \prime }( \alpha ) \,\mathrm{d}\alpha \biggr\vert \leq (t-u)^{2} \bigl\Vert \psi ^{\prime \prime } \bigr\Vert , $$
we conclude that
$$ \biggl\vert \int _{u}^{\frac{[s]_{p_{s},q_{s}}u+1}{[s-1]_{p_{s},q_{s}}}} \biggl(\frac{[s]_{p_{s},q_{s}}u+1}{[s-1]_{p_{s},q_{s}}}-\alpha \biggr)\psi ^{ \prime \prime }(\alpha )\,\mathrm{d} \alpha \biggr\vert \leq \biggl( \frac{[s]_{p_{s},q_{s}}u+1}{[s-1]_{p_{s},q_{s}}}-u \biggr)^{2} \bigl\Vert \psi ^{ \prime \prime } \bigr\Vert . $$
Hence,
$$ \bigl\vert \mathcal{R}_{s,p_{s},q_{s}}^{\tau }(\psi ;u)-\psi (u) \bigr\vert \leq {\biggl\{ }\mathcal{P}_{s,p_{s},q_{s}}^{\tau } \bigl( (t-u)^{2};u \bigr) + \biggl(\frac{[s]_{p_{s},q_{s}}u+1}{[s-1]_{p_{s},q_{s}}}-u \biggr)^{2} {\biggr\} } \bigl\Vert \psi ^{\prime \prime } \bigr\Vert . $$
Thus we complete the proof. □
Theorem 4.2
Let \(q=q_{s}\), \(p=p_{s}\) with \(q_{s}\in (0,1)\), \(p_{s}\in (q_{s},1]\) and \(f\in C_{B}[0,\infty )\). Then, for every \(\psi \in C_{B}^{2}[0,\infty )\) and \(s>2\) there exits a positive constant \(\mathcal{C}> \) satisfying the inequality
$$\begin{aligned} \bigl\vert \mathcal{P}_{s,p_{s},q_{s}}^{\tau }(f ;u)-f(u) \bigr\vert \leq &\mathcal{A} \biggl\{ \omega _{2} \biggl( f; \frac{\sqrt{\chi _{s}(u)}}{2} \biggr) +\min \biggl( 1, \frac{\chi _{s}(u)}{4} \biggr) \Vert f \Vert \biggr\} \\ &{}+\omega \bigl(f; \bigl\vert \mathcal{P}_{s,p_{s},q_{s}}(\Phi _{1};u) \bigr\vert \bigr). \end{aligned}$$
Proof
For all \(f\in C_{B}[0,\infty )\) and \(\psi \in C_{B}^{2}[0,\infty )\), it is very easy to see the result from Theorem 4.1. Indeed,
$$\begin{aligned} \bigl\vert \mathcal{R}_{s,p_{s},q_{s}}^{\tau }(f ;u)-f(u) \bigr\vert =& \biggl\vert \mathcal{R}_{s,p_{s},q_{s}}^{\tau }(f ;u)-f(u)+f \biggl( \frac{[s]_{p_{s},q_{s}}u+1}{[s-1]_{p,q}} \biggr)-f(u) \biggr\vert \\ \leq & \bigl\vert \mathcal{R}_{s,p_{s},q_{s}}^{\tau }(f-\psi ;u) \bigr\vert + \bigl\vert \mathcal{R}_{s,p_{s},q_{s}}^{\tau }( \psi ;u)-\psi (u) \bigr\vert \\ &{}+ \bigl\vert \psi (u)-f(u) \bigr\vert + \biggl\vert f \biggl( \frac{[s]_{p_{s},q_{s}}u+1}{[s-1]_{p_{s},q_{s}}} \biggr)-f(u) \biggr\vert \\ \leq &4 \Vert f-\psi \Vert +\chi _{s}(u) \bigl\Vert \psi ^{ \prime \prime } \bigr\Vert \\ &{}+\omega \biggl(f; \biggl\vert \biggl( \frac{[s]_{p_{s},q_{s}}}{[s-1]_{p_{s},q_{s}}}-1 \biggr) u+ \frac{1}{[s-1]_{p_{s},q_{s}}} \biggr\vert \biggr). \end{aligned}$$
By taking the infimum over all \(\psi \in C_{B}^{2}[0,\infty )\) and using (4.1), we get
$$\begin{aligned} \bigl\vert \mathcal{R}_{s,p_{s},q_{s}}^{\tau }(f ;u)-f(u) \bigr\vert \leq &4K_{2} \biggl( f;\frac{\chi _{s}(u)}{4} \biggr) +\omega \biggl(f; \biggl\vert \biggl( \frac{[s]_{p_{s},q_{s}}}{[s-1]_{p_{s},q_{s}}}-1 \biggr) u+ \frac{1}{[s-1]_{p_{s},q_{s}}} \biggr\vert \biggr) \\ \leq &\mathcal{A} {\biggl\{ }\omega _{2} \biggl( f; \frac{\sqrt{\chi _{s}(u)}}{2} \biggr) +\min \biggl( 1;\frac{\chi _{s}(u)}{4} \biggr) \Vert f \Vert {\biggr\} } \\ &{}+\omega \biggl(f; \biggl\vert \biggl( \frac{[s]_{p_{s},q_{s}}}{[s-1]_{p_{s},q_{s}}}-1 \biggr) u+ \frac{1}{[s-1]_{p_{s},q_{s}}} \biggr\vert \biggr). \end{aligned}$$
 □
We consider the following Lipschitz-type maximal function [24] and obtain the local approximation. For \(f\in C[0,\infty ]\), \(0<\kappa \leq 1\) and \(t,u\geq 0\), we recall that
$$ \mathrm{Lip}_{M}(\kappa )=\bigl\{ f: \bigl\vert f(t)-f(u) \bigr\vert \leq M \vert t-u \vert ^{ \kappa } \bigr\} . $$
(4.4)
Theorem 4.3
For all \(\kappa \in (0,1]\), \(s>2\), and \(f\in C_{B}[0,\infty )\), we have
$$ \bigl\vert \mathcal{P}_{s,p_{s},q_{s}}^{\tau }(f;u)-f(u) \bigr\vert \leq M \bigl( \delta _{s}(u) \bigr) ^{\kappa }, $$
where \(\delta _{s}(u)\) is given in Theorem 3.3.
Proof
We prove the claim by applying (4.4) and the well-known Hölder’s inequality:
$$\begin{aligned} \bigl\vert \mathcal{P}_{s,p_{s},q_{s}}^{\tau }(f;u)-f(u) \bigr\vert \leq &\mathcal{P}_{s,p_{s},q_{s}}^{\tau } \bigl( \bigl\vert f(t)-f(u) \bigr\vert ;u \bigr) \\ \leq &M| \mathcal{P}_{s,p_{s},q_{s}}^{\tau } \bigl( \vert t-u \vert ^{\kappa };u \bigr) \\ \leq &M \bigl( \mathcal{P}_{s,p_{s},q_{s}}^{\tau }(1;u) \bigr) ^{ \frac{2-\kappa }{2}} \bigl( \mathcal{P}_{s,p_{s},q_{s}}^{\tau }\bigl( \vert t-u \vert ^{2};u\bigr) \bigr) ^{\frac{\kappa }{2}} \\ =&M \bigl( \mathcal{P}_{s,p_{s},q_{s}}^{\tau }(\Phi _{2};u) \bigr) ^{ \frac{\kappa }{2}}. \end{aligned}$$
This gives the desired result. □
We denote
$$\begin{aligned}& C_{B}^{2}[0,\infty )= \bigl\{ \psi :\psi \in C_{B}[0,\infty ) \text{ and } \psi^{\prime },\psi ^{\prime \prime }\in C_{B}[0,\infty ) \bigr\} , \end{aligned}$$
(4.5)
$$\begin{aligned}& \Vert \psi \Vert _{C_{B}^{2}[0,\infty )}= \Vert \psi \Vert _{C_{B}[0,\infty )}+ \bigl\Vert \psi ^{\prime } \bigr\Vert _{C_{B}[0, \infty )}+ \bigl\Vert \psi ^{\prime \prime } \bigr\Vert _{C_{B}[0,\infty )}, \end{aligned}$$
(4.6)
$$\begin{aligned}& \Vert \psi \Vert _{C_{B}[0,\infty )}=\sup_{u\geq 0} \bigl\vert \psi (u) \bigr\vert . \end{aligned}$$
(4.7)
Theorem 4.4
Let the positive sequences of numbers \(0< q_{s}< p_{s}\leq 1\) satisfy \(\lim_{s\rightarrow \infty }q_{s}= 1\), \(\lim_{s\rightarrow \infty }p_{s}= 1\). Then for all \(\psi \in C_{B}^{2}[0,\infty )\), the operators \(\mathcal{P}_{s,p_{s},q_{s}}^{\tau }\) have the property
$$ \bigl\vert \mathcal{P}_{s,p_{s},q_{s}}^{\tau }(\psi ;u)-\psi (u) \bigr\vert \leq \Theta _{s}(u) \Vert \psi \Vert _{C_{B}^{2}[0,\infty )}, $$
(4.8)
where \(\Theta _{s}(u)=\sqrt{\delta _{s}(u)}+ \frac{ (\delta _{s}(u) )^{2}}{2}\).
Proof
Let \(\psi \in C_{B}^{2}[0,\infty )\). Then
$$ \psi (t)=\psi (u)+\psi ^{\prime }(u) (t-u)+\psi ^{\prime \prime }( \varphi ) \frac{(t-u)^{2}}{2}\quad \text{for } \varphi \in (u,t), $$
where if we take
$$\begin{aligned}& \mathcal{S}=\sup_{u\geq 0} \bigl\vert \psi ^{\prime }(u) \bigr\vert = \bigl\Vert \psi ^{\prime } \bigr\Vert _{C_{B}[0,\infty )}\leq \Vert \psi \Vert _{C_{B}^{2}[0, \infty )}, \\& \mathcal{T}=\sup_{u\geq 0} \bigl\vert \psi ^{\prime \prime }(u) \bigr\vert = \bigl\Vert \psi ^{\prime \prime } \bigr\Vert _{C_{B}[0,\infty )} \leq \Vert \psi \Vert _{C_{B}^{2}[0, \infty )}, \end{aligned}$$
then we have
$$\begin{aligned} \bigl\vert \psi (t)-\psi (u) \bigr\vert \leq & \mathcal{S} \vert t-u \vert +\frac{1}{2}\mathcal{T}(t-u)^{2} \\ \leq & \biggl( \vert t-u \vert +\frac{1}{2}(t-u)^{2} \biggr) \Vert \psi \Vert _{C_{B}^{2}[0,\infty )}. \end{aligned}$$
Therefore
$$\begin{aligned} \bigl\vert \mathcal{P}_{s,p_{s},q_{s}}^{\tau }(\psi ;u)-\psi (u) \bigr\vert \leq & \biggl( \mathcal{P}_{s,p_{s},q_{s}}^{\tau }\bigl( \vert t-u \vert ;u\bigr)+\frac{1}{2}\mathcal{P}_{s,p_{s},q_{s}}^{\tau } \bigl((t-u)^{2};u \bigr) \biggr) \Vert \psi \Vert _{C_{B}^{2}[0,\infty )} \\ \leq & \biggl( \bigl(\mathcal{P}_{s,p_{s},q_{s}}^{\tau } ( \Phi _{2};u ) \bigr)^{\frac{1}{2}}+\frac{1}{2} \mathcal{P}_{s,p_{s},q_{s}}^{\tau } (\Phi _{2};u ) \biggr) \Vert \psi \Vert _{C_{B}^{2}[0,\infty )}. \end{aligned}$$
This completes the proof of Theorem 4.4. □

5 Conclusion

We constructed a \((p,q)\)-variant of Szász operators by using the Beta functions of the second kind by introducing the Dunkl generalization. We obtained the approximation results involving local and global approximations in Korovkin’s and weighted Korovkin’s spaces. We applied some techniques of earlier investigation and discussed the convergence of operators by employing the modulus of continuity, Lipschitz class and Peetre’s K-functionals.

Acknowledgements

NA

Competing interests

The authors declare that they have no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.
Literature
1.
go back to reference Acar, T.: \((p,q)\)-Generalization of Szász–Mirakyan operators. Math. Methods Appl. Sci. 39(10), 2685–2695 (2016) MathSciNetCrossRef Acar, T.: \((p,q)\)-Generalization of Szász–Mirakyan operators. Math. Methods Appl. Sci. 39(10), 2685–2695 (2016) MathSciNetCrossRef
2.
go back to reference Acar, T., Agrawal, P.N., Kumar, A.S.: On a modification of \((p,q)\)-Szász–Mirakyan operators. Complex Anal. Oper. Theory 12(1), 155–167 (2018) MathSciNetCrossRef Acar, T., Agrawal, P.N., Kumar, A.S.: On a modification of \((p,q)\)-Szász–Mirakyan operators. Complex Anal. Oper. Theory 12(1), 155–167 (2018) MathSciNetCrossRef
3.
go back to reference Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of \((p,q)\)-Baskakov operators. J. Inequal. Appl. 2016, 98 (2016) MathSciNetCrossRef Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of \((p,q)\)-Baskakov operators. J. Inequal. Appl. 2016, 98 (2016) MathSciNetCrossRef
4.
go back to reference Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of \((p,q)\)-Bernstein operators. Iran. J. Sci. Technol., Trans. A, Sci. 42, 1459–1464 (2018) MathSciNetCrossRef Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of \((p,q)\)-Bernstein operators. Iran. J. Sci. Technol., Trans. A, Sci. 42, 1459–1464 (2018) MathSciNetCrossRef
5.
go back to reference Acar, T., Aral, A., Mohiuddine, S.A.: Approximation by bivariate \((p,q)\)-Bernstein–Kantorovich operators. Iran. J. Sci. Technol. Trans. A, Sci. 42(2), 655–662 (2018) MathSciNetCrossRef Acar, T., Aral, A., Mohiuddine, S.A.: Approximation by bivariate \((p,q)\)-Bernstein–Kantorovich operators. Iran. J. Sci. Technol. Trans. A, Sci. 42(2), 655–662 (2018) MathSciNetCrossRef
6.
go back to reference Acar, T., Aral, A., Mursaleen, M.: Approximation by Baskakov–Durrmeyer operators based on \((p,q)\)-integers. Math. Slovaca 68(4), 897–906 (2018) MathSciNetCrossRef Acar, T., Aral, A., Mursaleen, M.: Approximation by Baskakov–Durrmeyer operators based on \((p,q)\)-integers. Math. Slovaca 68(4), 897–906 (2018) MathSciNetCrossRef
7.
go back to reference Acar, T., Aral, A., Raşa, I.: Positive linear operators preserving τ and \(\tau ^{2}\). Constr. Math. Anal. 2(3), 98–102 (2019) MathSciNet Acar, T., Aral, A., Raşa, I.: Positive linear operators preserving τ and \(\tau ^{2}\). Constr. Math. Anal. 2(3), 98–102 (2019) MathSciNet
8.
go back to reference Acar, T., Mohiuddine, S.A., Mursaleen, M.: Approximation by \((p,q) \)-Baskakov–Durrmeyer–Stancu operators. Complex Anal. Oper. Theory 12(6), 1453–1468 (2018) MathSciNetCrossRef Acar, T., Mohiuddine, S.A., Mursaleen, M.: Approximation by \((p,q) \)-Baskakov–Durrmeyer–Stancu operators. Complex Anal. Oper. Theory 12(6), 1453–1468 (2018) MathSciNetCrossRef
9.
go back to reference Acar, T., Mursaleen, M., Mohiuddine, S.A.: Stancu type \((p,q)\)-Szász–Mirakyan–Baskakov operators. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 67(1), 116–128 (2018) MathSciNet Acar, T., Mursaleen, M., Mohiuddine, S.A.: Stancu type \((p,q)\)-Szász–Mirakyan–Baskakov operators. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 67(1), 116–128 (2018) MathSciNet
10.
go back to reference Alotaibi, A., Nasiruzzaman, M., Mursaleen, M.: A Dunkl type generalization of Szász operators via post-quantum calculus. J. Inequal. Appl. 2018, 287 (2018) CrossRef Alotaibi, A., Nasiruzzaman, M., Mursaleen, M.: A Dunkl type generalization of Szász operators via post-quantum calculus. J. Inequal. Appl. 2018, 287 (2018) CrossRef
11.
go back to reference Bin Jebreen, H., Mursaleen, M., Naaz, A.: Approximation by quaternion \((p,q)\)-Bernstein polynomials and Voronovskaja type result on compact disk. Adv. Differ. Equ. 2018, 448 (2018) MathSciNetCrossRef Bin Jebreen, H., Mursaleen, M., Naaz, A.: Approximation by quaternion \((p,q)\)-Bernstein polynomials and Voronovskaja type result on compact disk. Adv. Differ. Equ. 2018, 448 (2018) MathSciNetCrossRef
12.
go back to reference De Sole, A., Kac, V.G.: On integral representations of q-gamma and q-beta functions. Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl. 16, 11–29 (2005) MathSciNet De Sole, A., Kac, V.G.: On integral representations of q-gamma and q-beta functions. Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl. 16, 11–29 (2005) MathSciNet
13.
go back to reference İçöz, G., Çekim, B.: Dunkl generalization of Szász operators via q-calculus. J. Inequal. Appl. 2015, 284 (2015) CrossRef İçöz, G., Çekim, B.: Dunkl generalization of Szász operators via q-calculus. J. Inequal. Appl. 2015, 284 (2015) CrossRef
14.
go back to reference İnce İlarslan, H.G., Acar, T.: Approximation by bivariate \((p,q)\)-Baskakov–Kantorovich operators. Georgian Math. J. 25(3), 397–407 (2018) MathSciNetCrossRef İnce İlarslan, H.G., Acar, T.: Approximation by bivariate \((p,q)\)-Baskakov–Kantorovich operators. Georgian Math. J. 25(3), 397–407 (2018) MathSciNetCrossRef
15.
go back to reference Kadak, U.: On weighted statistical convergence based on \((p,q)\)-integers and related approximation theorems for functions of two variables. J. Math. Anal. Appl. 443(2), 752–764 (2016) MathSciNetCrossRef Kadak, U.: On weighted statistical convergence based on \((p,q)\)-integers and related approximation theorems for functions of two variables. J. Math. Anal. Appl. 443(2), 752–764 (2016) MathSciNetCrossRef
16.
go back to reference Kadak, U.: Weighted statistical convergence based on generalized difference operator involving \((p,q)\)-gamma function and its applications to approximation theorems. J. Math. Anal. Appl. 448(2), 1633–1650 (2017) MathSciNetCrossRef Kadak, U.: Weighted statistical convergence based on generalized difference operator involving \((p,q)\)-gamma function and its applications to approximation theorems. J. Math. Anal. Appl. 448(2), 1633–1650 (2017) MathSciNetCrossRef
17.
go back to reference Kadak, U., Mishra, V.N., Pandey, S.: Chlodowsky type generalization of \((p,q)\)-Szász operators involving Brenke type polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 112(4), 1443–1462 (2018) MathSciNetCrossRef Kadak, U., Mishra, V.N., Pandey, S.: Chlodowsky type generalization of \((p,q)\)-Szász operators involving Brenke type polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 112(4), 1443–1462 (2018) MathSciNetCrossRef
19.
go back to reference Khan, A., Sharma, V.: Statistical approximation by \((p,q)\)-analogue of Bernstein–Stancu operators. Azerb. J. Math. 8(2), 100–121 (2018) MathSciNet Khan, A., Sharma, V.: Statistical approximation by \((p,q)\)-analogue of Bernstein–Stancu operators. Azerb. J. Math. 8(2), 100–121 (2018) MathSciNet
20.
go back to reference Khan, K., Lobiyal, D.K.: Bézier curves based on Lupaş \((p,q)\)-analogue of Bernstein functions in CAGD. J. Comput. Appl. Math. 317, 458–477 (2017) MathSciNetCrossRef Khan, K., Lobiyal, D.K.: Bézier curves based on Lupaş \((p,q)\)-analogue of Bernstein functions in CAGD. J. Comput. Appl. Math. 317, 458–477 (2017) MathSciNetCrossRef
21.
go back to reference Khan, K., Lobiyal, D.K., Kilicman, A.: Bézier curves and surfaces based on modified Bernstein polynomials. Azerb. J. Math. 9(1), 3–21 (2019) MathSciNet Khan, K., Lobiyal, D.K., Kilicman, A.: Bézier curves and surfaces based on modified Bernstein polynomials. Azerb. J. Math. 9(1), 3–21 (2019) MathSciNet
23.
go back to reference Korovkin, P.P.: On convergence of linear operators in the space of continuous functions. Dokl. Akad. Nauk SSSR 90, 961–964 (1953) (Russian) MathSciNet Korovkin, P.P.: On convergence of linear operators in the space of continuous functions. Dokl. Akad. Nauk SSSR 90, 961–964 (1953) (Russian) MathSciNet
24.
go back to reference Lenze, B.: On Lipschitz type maximal functions and their smoothness spaces. Nederl. Akad. Indag. Math. 50, 53–63 (1988) MathSciNetCrossRef Lenze, B.: On Lipschitz type maximal functions and their smoothness spaces. Nederl. Akad. Indag. Math. 50, 53–63 (1988) MathSciNetCrossRef
25.
go back to reference Lupaş, A.: A q-analogue of the Bernstein operator. Univ. Cluj-Napoca Seminar Numer. Stat., Calculus 9, 85–92 (1987) MathSciNet Lupaş, A.: A q-analogue of the Bernstein operator. Univ. Cluj-Napoca Seminar Numer. Stat., Calculus 9, 85–92 (1987) MathSciNet
26.
go back to reference Maurya, R., Sharma, H., Gupta, C.: Approximation properties of Kantorovich type modifications of \((p,q)\)-Meyer–König–Zeller operators. Constr. Math. Anal. 1(1), 58–72 (2018) MathSciNet Maurya, R., Sharma, H., Gupta, C.: Approximation properties of Kantorovich type modifications of \((p,q)\)-Meyer–König–Zeller operators. Constr. Math. Anal. 1(1), 58–72 (2018) MathSciNet
27.
go back to reference Milovanovic, G.V., Mursaleen, M., Nasiruzzaman, M.: Modified Stancu type Dunkl generalization of Szász–Kantorovich operators. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 112, 135–151 (2018) MathSciNetCrossRef Milovanovic, G.V., Mursaleen, M., Nasiruzzaman, M.: Modified Stancu type Dunkl generalization of Szász–Kantorovich operators. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 112, 135–151 (2018) MathSciNetCrossRef
28.
go back to reference Mohiuddine, S.A., Acar, T., Alghamdi, M.A.: Genuine modified Bernstein–Durrmeyer operators. J. Inequal. Appl. 2018, 104 (2018) MathSciNetCrossRef Mohiuddine, S.A., Acar, T., Alghamdi, M.A.: Genuine modified Bernstein–Durrmeyer operators. J. Inequal. Appl. 2018, 104 (2018) MathSciNetCrossRef
29.
go back to reference Mohiuddine, S.A., Acar, T., Alotaibi, A.: Construction of a new family of Bernstein–Kantorovich operators. Math. Methods Appl. Sci. 40, 7749–7759 (2017) MathSciNetCrossRef Mohiuddine, S.A., Acar, T., Alotaibi, A.: Construction of a new family of Bernstein–Kantorovich operators. Math. Methods Appl. Sci. 40, 7749–7759 (2017) MathSciNetCrossRef
30.
go back to reference Mohiuddine, S.A., Acar, T., Alotaibi, A.: Durrmeyer type \((p,q)\)-Baskakov operators preserving linear functions. J. Math. Inequal. 12, 961–973 (2018) MathSciNetCrossRef Mohiuddine, S.A., Acar, T., Alotaibi, A.: Durrmeyer type \((p,q)\)-Baskakov operators preserving linear functions. J. Math. Inequal. 12, 961–973 (2018) MathSciNetCrossRef
31.
go back to reference Mohiuddine, S.A., Alamri, B.A.S.: Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(3), 1955–1973 (2019) MathSciNetCrossRef Mohiuddine, S.A., Alamri, B.A.S.: Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(3), 1955–1973 (2019) MathSciNetCrossRef
32.
go back to reference Mohiuddine, S.A., Ōzger, F.: Approximation of functions by Stancu variant of Bernstein–Kantorovich operators based on shape parameter α. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114, 70 (2020) MathSciNetCrossRef Mohiuddine, S.A., Ōzger, F.: Approximation of functions by Stancu variant of Bernstein–Kantorovich operators based on shape parameter α. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114, 70 (2020) MathSciNetCrossRef
33.
go back to reference Mursaleen, M., Ansari, K.J., Khan, A.: On \((p,q)\)-analogue of Bernstein operators. Appl. Math. Comput. 266, 874–882 (2015) MathSciNet Mursaleen, M., Ansari, K.J., Khan, A.: On \((p,q)\)-analogue of Bernstein operators. Appl. Math. Comput. 266, 874–882 (2015) MathSciNet
34.
go back to reference Mursaleen, M., Ansari, K.J., Khan, A.: Some approximation results by \((p,q)\)-analogue of Bernstein–Stancu operators. Appl. Math. Comput. 264, 392–402 (2015) MathSciNet Mursaleen, M., Ansari, K.J., Khan, A.: Some approximation results by \((p,q)\)-analogue of Bernstein–Stancu operators. Appl. Math. Comput. 264, 392–402 (2015) MathSciNet
35.
go back to reference Mursaleen, M., Naaz, A., Khan, A.: Improved approximation and error estimations by King type \((p,q)\)-Szász–Mirakjan–Kantorovich operators. Appl. Math. Comput. 348, 175–185 (2019) MathSciNet Mursaleen, M., Naaz, A., Khan, A.: Improved approximation and error estimations by King type \((p,q)\)-Szász–Mirakjan–Kantorovich operators. Appl. Math. Comput. 348, 175–185 (2019) MathSciNet
36.
go back to reference Mursaleen, M., Nasiruzzaman, M.: Approximation of modified Jakimovski–Leviatan–beta type operators. Constr. Math. Anal. 1(2), 88–98 (2018) MathSciNet Mursaleen, M., Nasiruzzaman, M.: Approximation of modified Jakimovski–Leviatan–beta type operators. Constr. Math. Anal. 1(2), 88–98 (2018) MathSciNet
37.
go back to reference Mursaleen, M., Nasiruzzaman, Md., Alotaibi, A.: On modified Dunkl generalization of Szász operators via q-calculus. J. Inequal. Appl. 2017, 38 (2017) CrossRef Mursaleen, M., Nasiruzzaman, Md., Alotaibi, A.: On modified Dunkl generalization of Szász operators via q-calculus. J. Inequal. Appl. 2017, 38 (2017) CrossRef
38.
go back to reference Nasiruzzaman, M., Mukheimer, A., Mursaleen, M.: A Dunkl-type generalization of Szász–Kantorovich operators via post quantum calculus. Symmetry 11(2), 232 (2019) CrossRef Nasiruzzaman, M., Mukheimer, A., Mursaleen, M.: A Dunkl-type generalization of Szász–Kantorovich operators via post quantum calculus. Symmetry 11(2), 232 (2019) CrossRef
39.
go back to reference Nasiruzzaman, M., Mukheimer, A., Mursaleen, M.: Approximation results on Dunkl generalization of Phillips operators via q-calculus. Adv. Differ. Equ. 2019, 244 (2019) MathSciNetCrossRef Nasiruzzaman, M., Mukheimer, A., Mursaleen, M.: Approximation results on Dunkl generalization of Phillips operators via q-calculus. Adv. Differ. Equ. 2019, 244 (2019) MathSciNetCrossRef
40.
go back to reference Ōzger, F., Srivastava, H.M., Mohiuddine, S.A.: Approximation of functions by a new class of generalized Bernstein–Schurer operators. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114, 173 (2020) MathSciNetCrossRef Ōzger, F., Srivastava, H.M., Mohiuddine, S.A.: Approximation of functions by a new class of generalized Bernstein–Schurer operators. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114, 173 (2020) MathSciNetCrossRef
41.
go back to reference Peetre, J.: A theory of interpolation of normed spaces. Noteas de Mathematica, Instituto de Mathemática Pura e Applicada, Conselho Nacional de Pesquidas, Rio de Janeiro 39 (1968) Peetre, J.: A theory of interpolation of normed spaces. Noteas de Mathematica, Instituto de Mathemática Pura e Applicada, Conselho Nacional de Pesquidas, Rio de Janeiro 39 (1968)
42.
go back to reference Phillips, G.M.: Bernstein polynomials based on the q-integers, The heritage of P.L. Chebyshev, A Festschrift in honor of the 70th-birthday of Professor T.J. Rivlin. Ann. Numer. Math. 4, 511–518 (1997) Phillips, G.M.: Bernstein polynomials based on the q-integers, The heritage of P.L. Chebyshev, A Festschrift in honor of the 70th-birthday of Professor T.J. Rivlin. Ann. Numer. Math. 4, 511–518 (1997)
43.
44.
go back to reference Rao, N., Wafi, A.: Bivariate–Schurer–Stancu operators based on \((p,q)\)-integers. Filomat 32(4), 1251–1258 (2018) MathSciNetCrossRef Rao, N., Wafi, A.: Bivariate–Schurer–Stancu operators based on \((p,q)\)-integers. Filomat 32(4), 1251–1258 (2018) MathSciNetCrossRef
45.
go back to reference Rao, N., Wafi, A., Acu, A.M.: q-Szász–Durrmeyer type operators based on Dunkl analogue. Complex Anal. Oper. Theory 13(3), 915–934 (2019) MathSciNetCrossRef Rao, N., Wafi, A., Acu, A.M.: q-Szász–Durrmeyer type operators based on Dunkl analogue. Complex Anal. Oper. Theory 13(3), 915–934 (2019) MathSciNetCrossRef
46.
go back to reference Sucu, S.: Dunkl analogue of Szász operators. Appl. Math. Comput. 244, 42–48 (2014) MathSciNet Sucu, S.: Dunkl analogue of Szász operators. Appl. Math. Comput. 244, 42–48 (2014) MathSciNet
47.
go back to reference Szász, O.: Generalization of S. Bernstein’s polynomials to the infinite interval. J. Res. Natl. Bur. Stand. 45, 239–245 (1950) MathSciNetCrossRef Szász, O.: Generalization of S. Bernstein’s polynomials to the infinite interval. J. Res. Natl. Bur. Stand. 45, 239–245 (1950) MathSciNetCrossRef
48.
go back to reference Wafi, A., Rao Deepmala, N.: Approximation properties of \((p,q)\)-variant of Stancu–Schurer operators. Bol. Soc. Parana. Mat. 37(4), 137–150 (2019) MathSciNetCrossRef Wafi, A., Rao Deepmala, N.: Approximation properties of \((p,q)\)-variant of Stancu–Schurer operators. Bol. Soc. Parana. Mat. 37(4), 137–150 (2019) MathSciNetCrossRef
Metadata
Title
Dunkl-type generalization of the second kind beta operators via -calculus
Authors
Md. Nasiruzzaman
Abdullah Alotaibi
M. Mursaleen
Publication date
01-12-2021
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2021
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-020-02534-2

Other articles of this Issue 1/2021

Journal of Inequalities and Applications 1/2021 Go to the issue

Premium Partner