Skip to main content
Top
Published in: Archive of Applied Mechanics 12/2018

02-08-2018 | Original

Dynamic analysis of partial-interaction Kant composite beams by weak-form quadrature element method

Authors: Chao Fu, Xiao Yang

Published in: Archive of Applied Mechanics | Issue 12/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the Kant higher-order beam theory is applied to model each segment of the partial-interaction composite beams, aiming to capture as possible fidelity as the plane stress model. On this basis, the weak-form equation is obtained through the principle of virtual work. Besides, the weak-form quadrature element (WQE), as a counterpart of the conventional finite element (CFE), is derived and implemented to more efficiently solve problems, including free vibration eigenvalue analysis and dynamic responses prediction to moving loads. After the verification of all the programs developed, a series of numerical examples are given to investigate the WQE’s superiority on convergence rate and numerical smoothness over the CFE. At the end of the paper, the influences of structural damping and loads’ moving speed on impact factor of two-span continuous beams are analyzed. Numerical results show that the proposed WQE, due to the variable-order interpolation of the element, possesses overwhelmingly higher computational efficiency than the CFE, and the numerical smoothness problem in the internal force analysis is significantly alleviated by WQE method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Newmark, N.M., Siess, C.P., Viest, I.M.: Tests and analysis of composite beams with incomplete interaction. Proc. Soc. Exp. Stress Anal. 9(1), 75–92 (1951) Newmark, N.M., Siess, C.P., Viest, I.M.: Tests and analysis of composite beams with incomplete interaction. Proc. Soc. Exp. Stress Anal. 9(1), 75–92 (1951)
2.
go back to reference Xu, R., Wang, G.: Variational principle of partial-interaction composite beams using Timoshenko’s beam theory. Int. J. Mech. Sci. 60(1), 72–83 (2012)CrossRef Xu, R., Wang, G.: Variational principle of partial-interaction composite beams using Timoshenko’s beam theory. Int. J. Mech. Sci. 60(1), 72–83 (2012)CrossRef
3.
go back to reference Xu, R., Wang, G.: Bending solutions of the Timoshenko partial-interaction composite beams using Euler–Bernoulli solutions. J. Eng. Mech., ASCE 139(12), 1881–1885 (2013)CrossRef Xu, R., Wang, G.: Bending solutions of the Timoshenko partial-interaction composite beams using Euler–Bernoulli solutions. J. Eng. Mech., ASCE 139(12), 1881–1885 (2013)CrossRef
4.
go back to reference Ecsedi, I., Baksa, A.: Analytical solution for layered composite beams with partial shear interaction based on Timoshenko beam theory. Eng. Struct. 115, 107–117 (2016)CrossRef Ecsedi, I., Baksa, A.: Analytical solution for layered composite beams with partial shear interaction based on Timoshenko beam theory. Eng. Struct. 115, 107–117 (2016)CrossRef
5.
go back to reference Schnabl, S., Saje, M., Turk, G., Planinc, I.: Analytical solution of two-layer beam taking into account interlayer slip and shear deformation. J. Struct. Eng., ASCE 133(6), 886–894 (2007)CrossRef Schnabl, S., Saje, M., Turk, G., Planinc, I.: Analytical solution of two-layer beam taking into account interlayer slip and shear deformation. J. Struct. Eng., ASCE 133(6), 886–894 (2007)CrossRef
6.
go back to reference Ranzi, G., Bradford, M.A.: Direct stiffness analysis of a composite beam-column element with partial interaction. Comput. Struct. 85(15–16), 1206–1214 (2007)CrossRef Ranzi, G., Bradford, M.A.: Direct stiffness analysis of a composite beam-column element with partial interaction. Comput. Struct. 85(15–16), 1206–1214 (2007)CrossRef
7.
go back to reference Nguyen, Q.-H., Martinelli, E., Hjiaj, M.: Derivation of the exact stiffness matrix for a two-layer Timoshenko beam element with partial interaction. Eng. Struct. 33(2), 298–307 (2011)CrossRef Nguyen, Q.-H., Martinelli, E., Hjiaj, M.: Derivation of the exact stiffness matrix for a two-layer Timoshenko beam element with partial interaction. Eng. Struct. 33(2), 298–307 (2011)CrossRef
8.
go back to reference Hou, H., He, G.: Static and dynamic analysis of two-layer Timoshenko composite beams by weak-form quadrature element method. Appl. Math. Model. 55, 466–483 (2018)MathSciNetCrossRef Hou, H., He, G.: Static and dynamic analysis of two-layer Timoshenko composite beams by weak-form quadrature element method. Appl. Math. Model. 55, 466–483 (2018)MathSciNetCrossRef
9.
go back to reference Chakrabarti, A., Sheikh, A.H., Griffith, M., Oehlers, D.J.: Dynamic response of composite beams with partial shear interaction using a higher order beam theory. J. Struct. Eng., ASCE 139(1), 47–56 (2013)CrossRef Chakrabarti, A., Sheikh, A.H., Griffith, M., Oehlers, D.J.: Dynamic response of composite beams with partial shear interaction using a higher order beam theory. J. Struct. Eng., ASCE 139(1), 47–56 (2013)CrossRef
10.
go back to reference Chakrabarti, A., Sheikh, A.H., Griffith, M., Oehlers, D.J.: Analysis of composite beams with partial shear interactions using a higher order beam theory. Eng. Struct. 36, 283–291 (2012)CrossRef Chakrabarti, A., Sheikh, A.H., Griffith, M., Oehlers, D.J.: Analysis of composite beams with partial shear interactions using a higher order beam theory. Eng. Struct. 36, 283–291 (2012)CrossRef
11.
go back to reference Reddy, J.N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51(4), 745–752 (1984)CrossRef Reddy, J.N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51(4), 745–752 (1984)CrossRef
12.
go back to reference He, G., Yang, X.: Dynamic analysis of two-layer composite beams with partial interaction using a higher order beam theory. Int. J. Mech. Sci. 90, 102–112 (2015)CrossRef He, G., Yang, X.: Dynamic analysis of two-layer composite beams with partial interaction using a higher order beam theory. Int. J. Mech. Sci. 90, 102–112 (2015)CrossRef
13.
go back to reference He, G., Yang, X.: Analysis of higher order composite beams by exact and finite element methods. Struct. Eng. Mech. 53(4), 625–644 (2015)CrossRef He, G., Yang, X.: Analysis of higher order composite beams by exact and finite element methods. Struct. Eng. Mech. 53(4), 625–644 (2015)CrossRef
14.
go back to reference He, G., Yang, X.: Finite element analysis for buckling of two-layer composite beams using Reddy’s higher order beam theory. Finite Elem. Anal. Des. 83, 49–57 (2014)CrossRef He, G., Yang, X.: Finite element analysis for buckling of two-layer composite beams using Reddy’s higher order beam theory. Finite Elem. Anal. Des. 83, 49–57 (2014)CrossRef
15.
go back to reference Manjunatha, B.S., Kant, T.: New theories for symmetric/unsymmetric composite and sandwich beams with C\(^{0}\) finite elements. Compos. Struct. 23(1), 61–73 (1993)CrossRef Manjunatha, B.S., Kant, T.: New theories for symmetric/unsymmetric composite and sandwich beams with C\(^{0}\) finite elements. Compos. Struct. 23(1), 61–73 (1993)CrossRef
16.
go back to reference Kant, T., Owen, D.R.J., Zienkiew, O.C.: A refined higher-order C\(^{0}\) plate bending element. Compos. Struct. 15(2), 177–183 (1982)MathSciNetCrossRef Kant, T., Owen, D.R.J., Zienkiew, O.C.: A refined higher-order C\(^{0}\) plate bending element. Compos. Struct. 15(2), 177–183 (1982)MathSciNetCrossRef
17.
go back to reference Kant, T., Gupta, A.: A finite element model for a higher-order shear-deformable beam theory. J. Sound Vib. 125(2), 193–202 (1988)CrossRef Kant, T., Gupta, A.: A finite element model for a higher-order shear-deformable beam theory. J. Sound Vib. 125(2), 193–202 (1988)CrossRef
18.
go back to reference Kroker, A.M.: Becker W Closed-form analysis of a higher-order composite box beam theory. Proc. Appl. Math. Mech. 9(1), 213–214 (2009)MathSciNetCrossRef Kroker, A.M.: Becker W Closed-form analysis of a higher-order composite box beam theory. Proc. Appl. Math. Mech. 9(1), 213–214 (2009)MathSciNetCrossRef
19.
go back to reference Kroker, A.M.: Becker W A higher-order composite beam theory for closed-form analysis of beams with box and I cross-section. Proc. Appl. Math. Mech. 10(1), 179–180 (2010)MathSciNetCrossRef Kroker, A.M.: Becker W A higher-order composite beam theory for closed-form analysis of beams with box and I cross-section. Proc. Appl. Math. Mech. 10(1), 179–180 (2010)MathSciNetCrossRef
20.
go back to reference Carrera, E., Pagani, A.: Analysis of reinforced and thin-walled structures by multi-line refined 1D/beam models. Int. J. Mech. Sci. 75, 278–287 (2013)CrossRef Carrera, E., Pagani, A.: Analysis of reinforced and thin-walled structures by multi-line refined 1D/beam models. Int. J. Mech. Sci. 75, 278–287 (2013)CrossRef
21.
go back to reference Carrera, E., Cinefra, M., Petrolo, M., Zappino, E.: Finite Element Analysis of Structures Through Unified Formulation. Wiley, New Delhi (2014)CrossRef Carrera, E., Cinefra, M., Petrolo, M., Zappino, E.: Finite Element Analysis of Structures Through Unified Formulation. Wiley, New Delhi (2014)CrossRef
22.
go back to reference Carrera, E., Giunta, G., Petrolo, M.: Beam Structures Classical and Advanced Theories. Wiley, London (2011)CrossRef Carrera, E., Giunta, G., Petrolo, M.: Beam Structures Classical and Advanced Theories. Wiley, London (2011)CrossRef
23.
go back to reference Szabo, B.A., Mehta, A.K.: \(p\)-convergent finite element approximations in fracture mechanics. Int. J. Numer. Methods Eng. 12(3), 551–560 (1978)CrossRef Szabo, B.A., Mehta, A.K.: \(p\)-convergent finite element approximations in fracture mechanics. Int. J. Numer. Methods Eng. 12(3), 551–560 (1978)CrossRef
24.
go back to reference Pozrikidis, C.: Introduction to Finite and Spectral Element Methods Using Matlab. CRC Press, New York (2014)MATH Pozrikidis, C.: Introduction to Finite and Spectral Element Methods Using Matlab. CRC Press, New York (2014)MATH
25.
go back to reference Wang, X.: Differential Quadrature and Differential Quadrature Based Element Methods Theory and Applications. Butterworth-Heinemann, Oxford (2015)MATH Wang, X.: Differential Quadrature and Differential Quadrature Based Element Methods Theory and Applications. Butterworth-Heinemann, Oxford (2015)MATH
26.
go back to reference Shu, C., Richards, B.E.: Application of generalized differential quadrature to solve two-dimensional incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 15(15), 791–798 (1992)CrossRef Shu, C., Richards, B.E.: Application of generalized differential quadrature to solve two-dimensional incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 15(15), 791–798 (1992)CrossRef
27.
go back to reference Zhong, H., Wang, Y.: Weak form quadrature element analysis of Bickford Beams. Eur. J. Mech. A-Solid 29(5), 851–858 (2010)CrossRef Zhong, H., Wang, Y.: Weak form quadrature element analysis of Bickford Beams. Eur. J. Mech. A-Solid 29(5), 851–858 (2010)CrossRef
28.
go back to reference Zhang, R., Zhong, H.: Weak form quadrature element analysis of planar slender beams based on geometrically exact beam theory. Arch. Appl. Mech. 83(9), 1309–1325 (2013)CrossRef Zhang, R., Zhong, H.: Weak form quadrature element analysis of planar slender beams based on geometrically exact beam theory. Arch. Appl. Mech. 83(9), 1309–1325 (2013)CrossRef
29.
go back to reference Zhong, H., Zhang, R., Xiao, N.: A quaternion-based weak form quadrature element formulation for spatial geometrically exact beams. Arch. Appl. Mech. 84(12), 1825–1840 (2014)CrossRef Zhong, H., Zhang, R., Xiao, N.: A quaternion-based weak form quadrature element formulation for spatial geometrically exact beams. Arch. Appl. Mech. 84(12), 1825–1840 (2014)CrossRef
30.
go back to reference Zhang, R., Zhong, H.: Weak form quadrature element analysis of spatial geometrically exact shear-rigid beams. Finite Elem. Anal. Des. 87, 22–31 (2014)MathSciNetCrossRef Zhang, R., Zhong, H.: Weak form quadrature element analysis of spatial geometrically exact shear-rigid beams. Finite Elem. Anal. Des. 87, 22–31 (2014)MathSciNetCrossRef
31.
go back to reference Jin, C., Wang, X.: Accurate free vibration analysis of Euler functionally graded beams by the weak form quadrature element method. Compos. Struct. 125, 41–50 (2015)CrossRef Jin, C., Wang, X.: Accurate free vibration analysis of Euler functionally graded beams by the weak form quadrature element method. Compos. Struct. 125, 41–50 (2015)CrossRef
32.
go back to reference Wang, Y., Wang, X.: Free vibration analysis of soft-core sandwich beams by the novel weak form quadrature element method. J. Sandw. Struct. Mater. 18(3), 294–320 (2016)CrossRef Wang, Y., Wang, X.: Free vibration analysis of soft-core sandwich beams by the novel weak form quadrature element method. J. Sandw. Struct. Mater. 18(3), 294–320 (2016)CrossRef
33.
go back to reference Wang, X., Yuan, Z.: A novel weak form three-dimensional quadrature element solution for vibrations of elastic solids with different boundary conditions. Finite Elem. Anal. Des. 141, 70–83 (2018)MathSciNetCrossRef Wang, X., Yuan, Z.: A novel weak form three-dimensional quadrature element solution for vibrations of elastic solids with different boundary conditions. Finite Elem. Anal. Des. 141, 70–83 (2018)MathSciNetCrossRef
34.
go back to reference Shen, Z., Zhong, H.: Static and vibrational analysis of partially composite beams using the weak-form quadrature element method. Math. Probl. Eng. 2012, 1–23 (2012)MathSciNetMATH Shen, Z., Zhong, H.: Static and vibrational analysis of partially composite beams using the weak-form quadrature element method. Math. Probl. Eng. 2012, 1–23 (2012)MathSciNetMATH
35.
go back to reference Zhong, H., Yue, Z.: Analysis of thin plates by the weak form quadrature element method. Sci. China Ser. G. 55(5), 861–871 (2012)CrossRef Zhong, H., Yue, Z.: Analysis of thin plates by the weak form quadrature element method. Sci. China Ser. G. 55(5), 861–871 (2012)CrossRef
36.
go back to reference Liao, M., Zhong, H.: Application of a weak form quadrature element method to nonlinear free vibrations of thin rectangular plates. Int. J. Struct. Stab. Dyn. 16(1), 1–12 (2016)MathSciNetCrossRef Liao, M., Zhong, H.: Application of a weak form quadrature element method to nonlinear free vibrations of thin rectangular plates. Int. J. Struct. Stab. Dyn. 16(1), 1–12 (2016)MathSciNetCrossRef
37.
go back to reference Zhang, R., Zhong, H.: Weak form quadrature element analysis of geometrically exact shells. Int. J. Nonlinear Mech. 71, 63–71 (2015)CrossRef Zhang, R., Zhong, H.: Weak form quadrature element analysis of geometrically exact shells. Int. J. Nonlinear Mech. 71, 63–71 (2015)CrossRef
38.
go back to reference Yuan, S., Zhong, H.: Consolidation analysis of non-homogeneous soil by the weak form quadrature element method. Comput. Geotech. 62, 1–10 (2014)CrossRef Yuan, S., Zhong, H.: Consolidation analysis of non-homogeneous soil by the weak form quadrature element method. Comput. Geotech. 62, 1–10 (2014)CrossRef
39.
go back to reference Yuan, S., Zhong, H.: A weak form quadrature element formulation for coupled analysis of unsaturated soils. Comput. Geotech. 76, 1–11 (2016)CrossRef Yuan, S., Zhong, H.: A weak form quadrature element formulation for coupled analysis of unsaturated soils. Comput. Geotech. 76, 1–11 (2016)CrossRef
40.
go back to reference Liu, B., Ferreira, A.J.M., Xing, Y.F., Neves, A.M.A.: Analysis of functionally graded sandwich and laminated shells using a layerwise theory and a differential quadrature finite element method. Compos. Struct. 136, 546–553 (2016)CrossRef Liu, B., Ferreira, A.J.M., Xing, Y.F., Neves, A.M.A.: Analysis of functionally graded sandwich and laminated shells using a layerwise theory and a differential quadrature finite element method. Compos. Struct. 136, 546–553 (2016)CrossRef
41.
go back to reference Liu, B., Ferreira, A.J.M., Xing, Y.F., Neves, A.M.A.: Analysis of composite plates using a layerwise theory and a differential quadrature finite element method. Compos. Struct. 156, 393–398 (2016)CrossRef Liu, B., Ferreira, A.J.M., Xing, Y.F., Neves, A.M.A.: Analysis of composite plates using a layerwise theory and a differential quadrature finite element method. Compos. Struct. 156, 393–398 (2016)CrossRef
42.
go back to reference Wang, X., Yuan, Z., Jin, C.: Weak form quadrature element method and its applications in science and engineering: A state-of-the-art review. ASME Appl. Mech. Rev. 69(3), 030801 (2017)CrossRef Wang, X., Yuan, Z., Jin, C.: Weak form quadrature element method and its applications in science and engineering: A state-of-the-art review. ASME Appl. Mech. Rev. 69(3), 030801 (2017)CrossRef
43.
go back to reference Bellman, R., Kashef, B.G., Casti, J.: Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J. Comput. Phys. 10, 40–52 (1972)MathSciNetCrossRef Bellman, R., Kashef, B.G., Casti, J.: Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J. Comput. Phys. 10, 40–52 (1972)MathSciNetCrossRef
44.
go back to reference Bellman, R.E., Casti, J.: Differential quadrature and long-term integration. J. Math. Anal. Appl. 34(2), 235–238 (1971)MathSciNetCrossRef Bellman, R.E., Casti, J.: Differential quadrature and long-term integration. J. Math. Anal. Appl. 34(2), 235–238 (1971)MathSciNetCrossRef
45.
go back to reference Jin, C., Wang, X., Ge, L.: Novel weak form quadrature element method with expanded Chebyshev nodes. Appl. Math. Lett. 34, 51–59 (2014)MathSciNetCrossRef Jin, C., Wang, X., Ge, L.: Novel weak form quadrature element method with expanded Chebyshev nodes. Appl. Math. Lett. 34, 51–59 (2014)MathSciNetCrossRef
46.
go back to reference Bathe, K.J.: Finite Element Procedures. Prentice-Hall, Upper Saddle River (1996)MATH Bathe, K.J.: Finite Element Procedures. Prentice-Hall, Upper Saddle River (1996)MATH
47.
go back to reference Huang, C.W., Su, Y.H.: Dynamic characteristics of partial composite beams. Int. J. Struct. Stab. Dyn. 8(4), 665–685 (2008)CrossRef Huang, C.W., Su, Y.H.: Dynamic characteristics of partial composite beams. Int. J. Struct. Stab. Dyn. 8(4), 665–685 (2008)CrossRef
Metadata
Title
Dynamic analysis of partial-interaction Kant composite beams by weak-form quadrature element method
Authors
Chao Fu
Xiao Yang
Publication date
02-08-2018
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 12/2018
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-018-1443-1

Other articles of this Issue 12/2018

Archive of Applied Mechanics 12/2018 Go to the issue

Premium Partners