Skip to main content
Top

2016 | OriginalPaper | Chapter

10. Dynamic Balancing and Flexible Task Execution for Dynamic Bipedal Walking Machines

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Effective use of robots in unstructured environments requires that they have sufficient autonomy and agility to execute task-level commands with temporal constraints successfully. A challenging example of such a robot is a bipedal walking machine, particularly one of humanoid form. Key features of the human morphology include a variable base of support and a high center of mass. The high center of mass supports the ability to support a high “sensor package”; when standing erect, the head can see over obstacles. The variable base of support allows both for operation in tight spaces, by keeping the feet close together, and stability against disturbances, by keeping the feet further apart to widen the support base. The feet can also be placed in specific locations when there are constraints due to challenging terrain. Thus, the human morphology supports a range of capabilities, and is important for operating in unstructured environments as humans do. A bipedal robot with human morphology should be able to walk to a particular location within a particular time, while observing foot placement constraints, and avoiding a fall, if this is physically possible. This is a challenging problem because a biped is highly nonlinear and has limited actuation due to its limited base of support. This chapter describes a novel approach to solving this problem that incorporates three key components: (1) a robust controller that is able to use angular momentum to enhance controllability beyond the limits imposed by the support base; (2) a plan specification where task requirements are expressed in a qualitative form that provides for spatial and temporal execution flexibility; and (3) a task executive that compiles the plan into a form that makes the dynamic limitations explicit, and then executes the compiled form using the robust controller.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Arakawa, T., Fukuda, T.: Natural motion generation of biped locomotion robot using hierarchical trajectory generation method consisting of ga, ep layers. In: Proceedings of 1997 IEEE International Conference on Robotics and Automation, vol. 1, pp. 211–216. IEEE, New York (1997) Arakawa, T., Fukuda, T.: Natural motion generation of biped locomotion robot using hierarchical trajectory generation method consisting of ga, ep layers. In: Proceedings of 1997 IEEE International Conference on Robotics and Automation, vol. 1, pp. 211–216. IEEE, New York (1997)
2.
go back to reference Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.: The explicit linear quadratic regulator for constrained systems. Automatica 38(1), 3–20 (2002)MATHMathSciNetCrossRef Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.: The explicit linear quadratic regulator for constrained systems. Automatica 38(1), 3–20 (2002)MATHMathSciNetCrossRef
3.
go back to reference Craig, J.J.: Introduction to Robotics: Mechanics and Control. Pearson/Prentice Hall, Upper Saddle River (2005) Craig, J.J.: Introduction to Robotics: Mechanics and Control. Pearson/Prentice Hall, Upper Saddle River (2005)
5.
6.
go back to reference Goswami, A.: Postural stability of biped robots and the foot-rotation indicator (fri) point. Int. J. Robot. Res. 18(6), 523–533 (1999)MathSciNetCrossRef Goswami, A.: Postural stability of biped robots and the foot-rotation indicator (fri) point. Int. J. Robot. Res. 18(6), 523–533 (1999)MathSciNetCrossRef
7.
go back to reference Hirai, K.: Current and future perspective of honda humamoid robot. In: Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’97), vol. 2, pp. 500–508. IEEE, New York (1997) Hirai, K.: Current and future perspective of honda humamoid robot. In: Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’97), vol. 2, pp. 500–508. IEEE, New York (1997)
8.
go back to reference Hofbaur, M.W., Williams, B.C.: Hybrid estimation of complex systems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34(5), 2178–2191 (2004)CrossRef Hofbaur, M.W., Williams, B.C.: Hybrid estimation of complex systems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34(5), 2178–2191 (2004)CrossRef
9.
go back to reference Hofmann, A.: Robust execution of bipedal walking tasks from biomechanical principles. Ph.D. thesis, Massachusetts Institute of Technology (2006) Hofmann, A.: Robust execution of bipedal walking tasks from biomechanical principles. Ph.D. thesis, Massachusetts Institute of Technology (2006)
10.
go back to reference Hofmann, A., Williams, B.: Exploiting Spatial and temporal flexibility for plan execution of hybrid, under-actuated systems. In: AAAI 2006 (2006) Hofmann, A., Williams, B.: Exploiting Spatial and temporal flexibility for plan execution of hybrid, under-actuated systems. In: AAAI 2006 (2006)
11.
go back to reference Hofmann, A., Massaquoi, S., Popovic, M., Herr, H.: A sliding controller for bipedal balancing using integrated movement of contact and non-contact limbs. In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), vol. 2, pp. 1952–1959. IEEE, New York (2004) Hofmann, A., Massaquoi, S., Popovic, M., Herr, H.: A sliding controller for bipedal balancing using integrated movement of contact and non-contact limbs. In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), vol. 2, pp. 1952–1959. IEEE, New York (2004)
12.
go back to reference Kajita, S., Matsumoto, O., Saigo, M.: Real-time 3d walking pattern generation for a biped robot with telescopic legs. In: Proceedings 2001 ICRA IEEE International Conference on Robotics and Automation, vol.3, pp. 2299–2306. IEEE, New York (2001) Kajita, S., Matsumoto, O., Saigo, M.: Real-time 3d walking pattern generation for a biped robot with telescopic legs. In: Proceedings 2001 ICRA IEEE International Conference on Robotics and Automation, vol.3, pp. 2299–2306. IEEE, New York (2001)
13.
go back to reference Léauté, T., Williams, B.C.: Coordinating agile systems through the model-based execution of temporal plans. In: Proceedings of the National Conference on Artificial Intelligence, vol. 20, p. 114. AAAI Press/MIT Press, Menlo Park/Cambridge (2005) Léauté, T., Williams, B.C.: Coordinating agile systems through the model-based execution of temporal plans. In: Proceedings of the National Conference on Artificial Intelligence, vol. 20, p. 114. AAAI Press/MIT Press, Menlo Park/Cambridge (2005)
14.
go back to reference Muscettola, N., Morris, P., Tsamardinos, I.: Reformulating temporal plans for efficient execution. In: In Principles of Knowledge Representation and Reasoning, Citeseer (1998) Muscettola, N., Morris, P., Tsamardinos, I.: Reformulating temporal plans for efficient execution. In: In Principles of Knowledge Representation and Reasoning, Citeseer (1998)
15.
go back to reference Nishiwaki, K., Kagami, S., Kuniyoshi, Y., Inaba, M., Inoue, H.: Online generation of humanoid walking motion based on a fast generation method of motion pattern that follows desired ZMP. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2684–2689. IEEE, New York (2002) Nishiwaki, K., Kagami, S., Kuniyoshi, Y., Inaba, M., Inoue, H.: Online generation of humanoid walking motion based on a fast generation method of motion pattern that follows desired ZMP. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2684–2689. IEEE, New York (2002)
16.
go back to reference Popovic, M.B., Goswami, A., Herr, H.: Ground reference points in legged locomotion: definitions, biological trajectories and control implications. Int. J. Robot. Res. 24(12), 1013–1032 (2005)CrossRef Popovic, M.B., Goswami, A., Herr, H.: Ground reference points in legged locomotion: definitions, biological trajectories and control implications. Int. J. Robot. Res. 24(12), 1013–1032 (2005)CrossRef
17.
go back to reference Pratt, J., Dilworth, P., Pratt, G.: Virtual model control of a bipedal walking robot. In: Proceedings of the 1997 IEEE International Conference on Robotics and Automation, vol. 1, pp. 193–198. IEEE, New York (1997) Pratt, J., Dilworth, P., Pratt, G.: Virtual model control of a bipedal walking robot. In: Proceedings of the 1997 IEEE International Conference on Robotics and Automation, vol. 1, pp. 193–198. IEEE, New York (1997)
18.
go back to reference Slotine, J.J.E., Li, W., et al.: Applied Nonlinear Control, vol. 199. Prentice Hall, New Jersey (1991)MATH Slotine, J.J.E., Li, W., et al.: Applied Nonlinear Control, vol. 199. Prentice Hall, New Jersey (1991)MATH
19.
go back to reference Sugihara, T., Nakamura, Y., Inoue, H.: Real-time humanoid motion generation through ZMP manipulation based on inverted pendulum control. In: Proceedings of ICRA’02 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1404–1409. IEEE, New York (2002) Sugihara, T., Nakamura, Y., Inoue, H.: Real-time humanoid motion generation through ZMP manipulation based on inverted pendulum control. In: Proceedings of ICRA’02 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1404–1409. IEEE, New York (2002)
20.
go back to reference Vukobratović, M., Borovac, B.: Zero-moment point—thirty five years of its life. Int. J. Humanoid Robot. 1(01), 157–173 (2004)CrossRef Vukobratović, M., Borovac, B.: Zero-moment point—thirty five years of its life. Int. J. Humanoid Robot. 1(01), 157–173 (2004)CrossRef
21.
go back to reference Vukobratovic, M., Juricic, D.: Contribution to the synthesis of biped gait. IEEE Trans. Biomed. Eng. 16(1), 1–6 (1969)CrossRef Vukobratovic, M., Juricic, D.: Contribution to the synthesis of biped gait. IEEE Trans. Biomed. Eng. 16(1), 1–6 (1969)CrossRef
22.
go back to reference Vukobratović, M., Stepanenko, J.: On the stability of anthropomorphic systems. Math. Biosci. 15(1), 1–37 (1972)MATHCrossRef Vukobratović, M., Stepanenko, J.: On the stability of anthropomorphic systems. Math. Biosci. 15(1), 1–37 (1972)MATHCrossRef
23.
go back to reference Williams, B.C.: The use of continuity in a qualitative physics. In: AAAI, pp. 350–354 (1984) Williams, B.C.: The use of continuity in a qualitative physics. In: AAAI, pp. 350–354 (1984)
24.
go back to reference Williams, B.C., Nayak, P.P.: A reactive planner for a model-based executive. In: IJCAI, Citeseer, vol. 97, pp. 1178–1185 (1997) Williams, B.C., Nayak, P.P.: A reactive planner for a model-based executive. In: IJCAI, Citeseer, vol. 97, pp. 1178–1185 (1997)
25.
go back to reference Yokoi, K., Kanehiro, F., Kaneko, K., Fujiwara, K., Kajita, S., Hirukawa, H.: A honda humanoid robot controlled by aist software. In: Proceedings of the IEEE-RAS International Conference on Humanoid Robots, pp. 259–264 (2001) Yokoi, K., Kanehiro, F., Kaneko, K., Fujiwara, K., Kajita, S., Hirukawa, H.: A honda humanoid robot controlled by aist software. In: Proceedings of the IEEE-RAS International Conference on Humanoid Robots, pp. 259–264 (2001)
Metadata
Title
Dynamic Balancing and Flexible Task Execution for Dynamic Bipedal Walking Machines
Author
Andreas Hofmann
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-17683-3_10