Skip to main content
Top

2019 | OriginalPaper | Chapter

38. Dynamic Brittle Fracture from Nonlocal Double-Well Potentials: A State-Based Model

Authors : Robert Lipton, Eyad Said, Prashant K. Jha

Published in: Handbook of Nonlocal Continuum Mechanics for Materials and Structures

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We introduce a regularized model for free fracture propagation based on nonlocal potentials. We work within the small deformation setting, and the model is developed within a state-based peridynamic formulation. At each instant of the evolution, we identify the softening zone where strains lie above the strength of the material. We show that deformation discontinuities associated with flaws larger than the length scale of nonlocality δ can become unstable and grow. An explicit inequality is found that shows that the volume of the softening zone goes to zero linearly with the length scale of nonlocal interaction. This scaling is consistent with the notion that a softening zone of width proportional to δ converges to a sharp fracture set as the length scale of nonlocal interaction goes to zero. Here the softening zone is interpreted as a regularization of the crack network. Inside quiescent regions with no cracks or softening, the nonlocal operator converges to the local elastic operator at a rate proportional to the radius of nonlocal interaction. This model is designed to be calibrated to measured values of critical energy release rate, shear modulus, and bulk modulus of material samples. For this model one is not restricted to Poisson ratios of 1∕4 and can choose the potentials so that small strain behavior is specified by the isotropic elasticity tensor for any material with prescribed shear and Lamé moduli.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference A. Agwai, I. Guven, E. Madenci, Predicting crack propagation with peridynamics: a comparative study. Int. J. Fract. 171, 65–78 (2011)CrossRef A. Agwai, I. Guven, E. Madenci, Predicting crack propagation with peridynamics: a comparative study. Int. J. Fract. 171, 65–78 (2011)CrossRef
go back to reference F. Bobaru, W. Hu, The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. Int. J. Fract. 176, 215–222 (2012)CrossRef F. Bobaru, W. Hu, The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. Int. J. Fract. 176, 215–222 (2012)CrossRef
go back to reference F. Bobaru, J.T. Foster, P.H. Geubelle, S.A. Silling, Handbook of Peridynamic Modeling (CRC Press, Boca Raton, 2016)MATH F. Bobaru, J.T. Foster, P.H. Geubelle, S.A. Silling, Handbook of Peridynamic Modeling (CRC Press, Boca Raton, 2016)MATH
go back to reference K. Dayal, K. Bhattacharya, Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J. Mech. Phys. Solids 54, 1811–1842 (2006)MathSciNetCrossRef K. Dayal, K. Bhattacharya, Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J. Mech. Phys. Solids 54, 1811–1842 (2006)MathSciNetCrossRef
go back to reference P. Diehl, R. Lipton, M.A. Schweitzer, Numerical verification of a bond-based softening peridynamic model for small displacements: deducing material parameters from classical linear theory. Institut für Numerische Simulation Preprint No. 1630 (2016) P. Diehl, R. Lipton, M.A. Schweitzer, Numerical verification of a bond-based softening peridynamic model for small displacements: deducing material parameters from classical linear theory. Institut für Numerische Simulation Preprint No. 1630 (2016)
go back to reference B.K. Driver, Analysis Tools with Applications. E-book (Springer, Berlin, 2003) B.K. Driver, Analysis Tools with Applications. E-book (Springer, Berlin, 2003)
go back to reference Q. Du, M. Gunzburger, R. Lehoucq, K. Zhou, Analysis of the volume-constrained peridynamic Navier equation of linear elasticity. J. Elast. 113, 193–217 (2013)MathSciNetCrossRef Q. Du, M. Gunzburger, R. Lehoucq, K. Zhou, Analysis of the volume-constrained peridynamic Navier equation of linear elasticity. J. Elast. 113, 193–217 (2013)MathSciNetCrossRef
go back to reference J.T. Foster, S.A. Silling, W. Chen, An energy based failure criterion for use with peridynamic states. Int. J. Multiscale Comput. Eng. 9, 675–688 (2011)CrossRef J.T. Foster, S.A. Silling, W. Chen, An energy based failure criterion for use with peridynamic states. Int. J. Multiscale Comput. Eng. 9, 675–688 (2011)CrossRef
go back to reference W. Gerstle, N. Sau, S. Silling, Peridynamic modeling of concrete structures. Nucl. Eng. Des. 237, 1250–1258 (2007)CrossRef W. Gerstle, N. Sau, S. Silling, Peridynamic modeling of concrete structures. Nucl. Eng. Des. 237, 1250–1258 (2007)CrossRef
go back to reference Y.D. Ha, F. Bobaru, Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 162, 229–244 (2010)CrossRef Y.D. Ha, F. Bobaru, Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 162, 229–244 (2010)CrossRef
go back to reference I. Jasiuk, J. Chen, M.F. Thorpe, Elastic moduli of two dimensional materials with polygonal and elliptical holes. Appl. Mech. Rev. 47, S18–S28 (1994)CrossRef I. Jasiuk, J. Chen, M.F. Thorpe, Elastic moduli of two dimensional materials with polygonal and elliptical holes. Appl. Mech. Rev. 47, S18–S28 (1994)CrossRef
go back to reference R. Lipton, S. Silling, R. Lehoucq, Complex fracture nucleation and evolution with nonlocal elastodynamics. arXiv preprint arXiv:1602.00247 (2016) R. Lipton, S. Silling, R. Lehoucq, Complex fracture nucleation and evolution with nonlocal elastodynamics. arXiv preprint arXiv:1602.00247 (2016)
go back to reference G.W. Milton, The Theory of Composites (Cambridge University Press, Cambridge, 2002)CrossRef G.W. Milton, The Theory of Composites (Cambridge University Press, Cambridge, 2002)CrossRef
go back to reference S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)MathSciNetCrossRef S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)MathSciNetCrossRef
go back to reference S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct 83, 1526–1535 (2005)CrossRef S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct 83, 1526–1535 (2005)CrossRef
go back to reference S.A. Silling, F. Bobaru, Peridynamic modeling of membranes and fibers. Int. J. Nonlinear Mech. 40, 395–409 (2005)CrossRef S.A. Silling, F. Bobaru, Peridynamic modeling of membranes and fibers. Int. J. Nonlinear Mech. 40, 395–409 (2005)CrossRef
go back to reference S.A. Silling, R.B. Lehoucq, Convergence of peridynamics to classical elasticity theory. J. Elast. 93, 13–37 (2008)MathSciNetCrossRef S.A. Silling, R.B. Lehoucq, Convergence of peridynamics to classical elasticity theory. J. Elast. 93, 13–37 (2008)MathSciNetCrossRef
go back to reference S. A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states and constitutive modeling. J. Elast. 88, 151–184 (2007)MathSciNetCrossRef S. A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states and constitutive modeling. J. Elast. 88, 151–184 (2007)MathSciNetCrossRef
go back to reference S. Silling, O. Weckner, E. Askari, F. Bobaru, Crack nucleation in a peridynamic solid. Int. J. Fract. 162, 219–227 (2010)CrossRef S. Silling, O. Weckner, E. Askari, F. Bobaru, Crack nucleation in a peridynamic solid. Int. J. Fract. 162, 219–227 (2010)CrossRef
go back to reference O. Weckner, R. Abeyaratne, The effect of long-range forces on the dynamics of a bar. J. Mech. Phys. Solids 53, 705–728 (2005)MathSciNetCrossRef O. Weckner, R. Abeyaratne, The effect of long-range forces on the dynamics of a bar. J. Mech. Phys. Solids 53, 705–728 (2005)MathSciNetCrossRef
Metadata
Title
Dynamic Brittle Fracture from Nonlocal Double-Well Potentials: A State-Based Model
Authors
Robert Lipton
Eyad Said
Prashant K. Jha
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-58729-5_33

Premium Partners