Interface effect is an important phenomenon for cavitating flow, the momentum, mass and energy transfer occur through the interface between the gas-liquid. The interfacial area per unit volume liquid is positively correlated with the size distribution of the bubble, the bubble size distribution can be described by defining a probability density function \(f({\varvec{r}},\varsigma ,t)\), and the internal coordinates \(\varsigma\) are taken as bubble diameter in the model, and the \(f({\varvec{r}},\varsigma ,t)\mathrm{d}\varsigma\) represents the number of bubbles with between \((\varsigma ,\varsigma +\mathrm{d}\varsigma )\) at per volume liquid. Thus, integration of \(f\) over bubble diameter results in the total number of bubbles per volume liquid.The breakage, coalescence are two main factors affecting bubble size distribution in the cavitating flow, and bubble size distribution is predicted by the model of the breakage and coalescence processes of bubbles, this leads to the so-called population balance equation (PBE).
The PBE is a transport equation, the evolution of function
\(f\) can be described by the PBE in the spiral coordinates
\((\eta ,\zeta )\), the PBE is written as follows:
$$\begin{array}{ll}\frac{\partial f\left(\eta ,\varsigma ,t\right)}{\partial t}+{u}_{b}\frac{\partial }{\zeta \partial \eta }\left(f\left(\eta ,\varsigma ,t\right)\right)\\= -\,b(\varsigma )f(\eta ,\varsigma ,t)\\ \,\,+\int\limits_{\varsigma }^{{\varsigma }_{\mathrm{max}}}{h}_{b}\left(\xi ,\varsigma \right)b\left(\xi \right)f\left(\eta ,\xi ,t\right)\mathrm{d}\xi \\\,\, -\,f(\eta ,\varsigma )\int\limits_{0}^{{\varsigma }_{\mathrm{max}}}c(\varsigma ,\xi )f(\eta ,\xi ,t)\mathrm{d}\xi \\ \,\,+\,\frac{{\varsigma }^{2}}{2}\int\limits_{0}^{\varsigma }\frac{c\left({\left({\varsigma }^{3}-{\xi }^{3}\right)}^{1/3},\xi \right)}{{\left({\varsigma }^{3}-{\xi }^{3}\right)}^{2/3}}f\left(\eta ,{\left({\varsigma }^{3}-{\xi }^{3}\right)}^{1/3},t\right)f\left(\eta ,\xi ,t\right)\mathrm{d}\xi \\ \,\,+\,{S}_{c}(\varsigma ),\end{array}$$
(44)
where, the first term on the right-hand side of Eq. (
44) represents breakup sink term of bubbles with diameter
\(\varsigma\) per unit time, the second term on the right-hand side of Eq. (
44) represents breakup source term of bubbles with diameter
\(\varsigma\) per unit time, the third term on the right-hand side of Eq. (
44) represents coalescence sink term of bubbles with diameter
\(\varsigma\) per unit time,the fourth term on the right-hand side of Eq. (
44) represents coalescence source term of bubbles with diameter
\(\varsigma\) per unit time, the fifth term on the right-hand side of Eq. (
44) represents bubbles with diameter
\(\varsigma\) source term.
The value of parameter
\({\beta }_{c}\) is taken as 2.48. The expression of source term
\({S}_{c}(\varsigma )\) is
$${S}_{c}\left(\varsigma \right)={C}_{\rho }\sqrt{\left({p}_{v}-p\right)}\chi \left(\varsigma \right),$$
(51)
where
$$\chi \left(\varsigma \right)=\int\limits_{0}^{\varsigma }(\psi (\varsigma ,{\varsigma }_{c}){g}_{c}({\varsigma }_{c}))\mathrm{d}{\varsigma }_{c},$$
(52)
$${C}_{\rho }={\left(\frac{2}{3{\rho }_{w}}\right)}^{1/2}.$$
(53)
The diameter distribution density function of the gas nucleus is given by experimental data [
29]:
$${g}_{c}\left({\varsigma }_{c}\right)\approx \frac{\left(\alpha +1\right)}{{\varsigma }_{c\mathrm{max}}}{N}_{i}{\left(\frac{{\varsigma }_{c}}{{\varsigma }_{c\mathrm{max}}}\right)}^{\alpha },$$
(55)
where the value of parameter
\(\mathrm{\alpha }\) is taken as − 10/3.