Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

02-11-2020 | Original Article

Dynamic clustering collaborative filtering recommendation algorithm based on double-layer network

Journal:
International Journal of Machine Learning and Cybernetics
Authors:
Jianrui Chen, Bo Wang, Zhiping Ouyang, Zhihui Wang
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

With the rapid development of internet economy, personal recommender system plays an increasingly important role in e-commerce. In order to improve the quality of recommendation, a variety of scholars and engineers devoted themselves in developing the recommendation algorithms. Traditional collaborative filtering algorithms are only dependent on rating information or attribute information. Most of them were considered in perspective of a single-layer network, which destroyed the original hierarchy of data and resulted in sparse matrix and poor timeliness. In order to address these problems and improve the accuracy of recommendation, dynamic clustering collaborative filtering recommendation algorithm based on double-layer network is put forward in this paper. Firstly, attribute information of users and items are respectively used to construct the user layer network and the item layer network. Secondly, new hierarchical clustering method is further presented, which separates users into different communities according to dynamic evolutionary clustering. Finally, score prediction and top-N recommendation lists are obtained by similarity between users in each community. Extensive experiments are conducted with three real datasets, and the effectiveness of our algorithm is verified by different metrics.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article