Skip to main content
Top
Published in:

01-12-2016 | Original Article

Dynamic community detection in evolving networks using locality modularity optimization

Authors: Mário Cordeiro, Rui Portocarrero Sarmento, João Gama

Published in: Social Network Analysis and Mining | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The amount and the variety of data generated by today’s online social and telecommunication network services are changing the way researchers analyze social networks. Facing fast evolving networks with millions of nodes and edges are, among other factors, its main challenge. Community detection algorithms in these conditions have also to be updated or improved. Previous state-of-the-art algorithms based on the modularity optimization (i.e. Louvain algorithm), provide fast, efficient and robust community detection on large static networks. Nonetheless, due to the high computing complexity of these algorithms, the use of batch techniques in dynamic networks requires to perform network community detection for the whole network in each one of the evolution steps. This fact reveals to be computationally expensive and unstable in terms of tracking of communities. Our contribution is a novel technique that maintains the community structure always up-to-date following the addition or removal of nodes and edges. The proposed algorithm performs a local modularity optimization that maximizes the modularity gain function only for those communities where the editing of nodes and edges was performed, keeping the rest of the network unchanged. The effectiveness of our algorithm is demonstrated with the comparison to other state-of-the-art community detection algorithms with respect to Newman’s Modularity, Modularity with Split Penalty, Modularity Density, number of detected communities and running time.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of community hierarchies in large networks. CoRR abs/0803.0476 Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of community hierarchies in large networks. CoRR abs/0803.0476
2.
go back to reference Chen M, Nguyen T, Szymanski B (2013) On measuring the quality of a network community structure. In: Social computing (SocialCom), 2013 international conference on, pp 122–127. doi:10.1109/SocialCom. 25 Chen M, Nguyen T, Szymanski B (2013) On measuring the quality of a network community structure. In: Social computing (SocialCom), 2013 international conference on, pp 122–127. doi:10.​1109/​SocialCom.​ 25
3.
6.
go back to reference Greene D, Doyle D, Cunningham P (2010) Tracking the evolution of communities in dynamic social networks. In: ASONAM, pp 176–183. IEEE computer society, Washington, DC. doi:10.1109/ASONAM.2010.17 Greene D, Doyle D, Cunningham P (2010) Tracking the evolution of communities in dynamic social networks. In: ASONAM, pp 176–183. IEEE computer society, Washington, DC. doi:10.​1109/​ASONAM.​2010.​17
7.
go back to reference Greene D, Doyle D, Cunningham P (2010) Tracking the evolution of communities in dynamic social networks. In: Proceedings–2010 international conference on advances in social network analysis and mining, ASONAM 2010, pp 176–183. doi:10.1109/ASONAM.2010.17 Greene D, Doyle D, Cunningham P (2010) Tracking the evolution of communities in dynamic social networks. In: Proceedings–2010 international conference on advances in social network analysis and mining, ASONAM 2010, pp 176–183. doi:10.​1109/​ASONAM.​2010.​17
8.
go back to reference Haynes J, Perisic I (2009) Mapping search relevance to social networks. In: Proceedings of the 3rd workshop on social network mining and analysis, SNA-KDD ’09, pp 2:1–2:7. ACM, New York, NY. doi:10.1145/1731011.1731013 Haynes J, Perisic I (2009) Mapping search relevance to social networks. In: Proceedings of the 3rd workshop on social network mining and analysis, SNA-KDD ’09, pp 2:1–2:7. ACM, New York, NY. doi:10.​1145/​1731011.​1731013
9.
go back to reference Leskovec J, Kleinberg J, Faloutsos C (2005) Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceeding of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining–KDD ’05, p. 177. ACM Press, New York. doi:10.1145/1081870.1081893 Leskovec J, Kleinberg J, Faloutsos C (2005) Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceeding of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining–KDD ’05, p. 177. ACM Press, New York. doi:10.​1145/​1081870.​1081893
11.
go back to reference Nguyen NP, Dinh TN, Tokala S, Thai MT (2011) Overlapping communities in dynamic networks: their detection and mobile applications. In: P. Ramanathan T, Nandagopal BN, Levine (eds) Proceedings of the 17th annual international conference on mobile computing and networking, MOBICOM 2011, Las Vegas, Nevada, September 19–23, pp 85–96. ACM. doi:10.1145/2030613.2030624 Nguyen NP, Dinh TN, Tokala S, Thai MT (2011) Overlapping communities in dynamic networks: their detection and mobile applications. In: P. Ramanathan T, Nandagopal BN, Levine (eds) Proceedings of the 17th annual international conference on mobile computing and networking, MOBICOM 2011, Las Vegas, Nevada, September 19–23, pp 85–96. ACM. doi:10.​1145/​2030613.​2030624
12.
go back to reference Nguyen NP, Dinh TN, Xuan Y, Thai MT (2011) Adaptive algorithms for detecting community structure in dynamic social networks. In: INFOCOM, pp 2282–2290. IEEE Nguyen NP, Dinh TN, Xuan Y, Thai MT (2011) Adaptive algorithms for detecting community structure in dynamic social networks. In: INFOCOM, pp 2282–2290. IEEE
14.
go back to reference Pujol JM, Erramilli V, Rodriguez P (2009) Divide and conquer: partitioning online social networks. CoRR abs/0905.4918 Pujol JM, Erramilli V, Rodriguez P (2009) Divide and conquer: partitioning online social networks. CoRR abs/0905.4918
15.
go back to reference Shang J, Liu L, Xie F, Chen Z, Miao J, Fang X, Wu C (2012) A real-time detecting algorithm for tracking community structure of dynamic networks. SNAKDD, 18th ACM SIGKDD 12 Shang J, Liu L, Xie F, Chen Z, Miao J, Fang X, Wu C (2012) A real-time detecting algorithm for tracking community structure of dynamic networks. SNAKDD, 18th ACM SIGKDD 12
16.
go back to reference Xie J, Chen M, Szymanski BK (2013) LabelRankT: incremental community detection in dynamic networks via label propagation Xie J, Chen M, Szymanski BK (2013) LabelRankT: incremental community detection in dynamic networks via label propagation
18.
go back to reference Xie J, Szymanski B (2013) Labelrank: a stabilized label propagation algorithm for community detection in networks. Network Science Workshop (NSW) Xie J, Szymanski B (2013) Labelrank: a stabilized label propagation algorithm for community detection in networks. Network Science Workshop (NSW)
19.
go back to reference Xie J, Szymanski BK (2012) Towards linear time overlapping community detection in social networks. In: Lecture notes in computer science, vol 7301 LNAI, pp 25–36 Xie J, Szymanski BK (2012) Towards linear time overlapping community detection in social networks. In: Lecture notes in computer science, vol 7301 LNAI, pp 25–36
20.
go back to reference Xie J, Szymanski BK, Liu X (2011) SLPA: uncovering overlapping communities in social networks via a speaker-listener interaction dynamic process. In: IEEE international conference on data mining, ICDM, pp 344–349 Xie J, Szymanski BK, Liu X (2011) SLPA: uncovering overlapping communities in social networks via a speaker-listener interaction dynamic process. In: IEEE international conference on data mining, ICDM, pp 344–349
Metadata
Title
Dynamic community detection in evolving networks using locality modularity optimization
Authors
Mário Cordeiro
Rui Portocarrero Sarmento
João Gama
Publication date
01-12-2016
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2016
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-016-0325-1

Premium Partner