Skip to main content
Top

2019 | OriginalPaper | Chapter

27. Dynamic Compressive Mechanical Behavior of Magnesium-Based Materials: Magnesium Single Crystal, Polycrystalline Magnesium, and Magnesium Alloy

Author : Qizhen Li

Published in: Handbook of Mechanics of Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This book chapter focuses on compressive mechanical behavior of magnesium-based materials under dynamic loadings, especially high strain rate loadings. The content is organized into five sections: Section 1 provides an introduction of related literature results, Section 2 presents an overview of the split Hopkinson pressure bar technique for high strain rate tests and its fundamental data processing method, Section 3 delineates some widely used constitutive models for predicting mechanical responses of materials under high strain rate loadings, Section 4 reports the experimental results, theoretical modeling, and computational simulations of compressive dynamic mechanical behavior of magnesium-based materials under different high strain rate loadings, and Section 5 presents the conclusions. In Section 4, three types of magnesium-based materials (i.e., magnesium single crystal, polycrystalline magnesium, and AZ31 magnesium alloy) were tested at both quasistatic and dynamic loading strain rates to investigate their compressive mechanical behavior. The employed strain rates are in the range of 0.001~3600 s−1. Theoretical stress-strain relations based on the empirical Johnson-Cook model were also derived for each type of the studied materials. The theoretically predicted stress-strain curves agree well with the experimental curves for these three types of materials. Finite element modeling was also performed to investigate the dynamic compressive behavior of the three types of the studied materials. The computational stress-strain curves match the experimental data for magnesium single crystal and polycrystalline magnesium, while a simulation was conducted to predict the compressive properties of AZ31 magnesium alloy at a randomly chosen strain rate.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hopkinson B. A method of measuring the pressure produced in the detonation of high, explosives or by the impact of bullets. Roy Soc Phil Trans. 1914;A213:437.CrossRef Hopkinson B. A method of measuring the pressure produced in the detonation of high, explosives or by the impact of bullets. Roy Soc Phil Trans. 1914;A213:437.CrossRef
2.
go back to reference Kolsky H. An Investigation of the Mechanical Properties of Materials at very High Rates of Loading. Proc R Soc Lond. 1949;62B:676.CrossRef Kolsky H. An Investigation of the Mechanical Properties of Materials at very High Rates of Loading. Proc R Soc Lond. 1949;62B:676.CrossRef
3.
go back to reference Davies RM. A critical study of the Hopkinson pressure bar. Roy Soc Phil Trans. 1948;A240:375.CrossRef Davies RM. A critical study of the Hopkinson pressure bar. Roy Soc Phil Trans. 1948;A240:375.CrossRef
4.
go back to reference Zhao F, Li Y, Suo T, Huang W, Liu J. Compressive deformation behavior of AZ31 magnesium alloy under quasi-static and dynamic loading. Trans Nonferrous Metals Soc China. 2010;20:1316.CrossRef Zhao F, Li Y, Suo T, Huang W, Liu J. Compressive deformation behavior of AZ31 magnesium alloy under quasi-static and dynamic loading. Trans Nonferrous Metals Soc China. 2010;20:1316.CrossRef
5.
go back to reference Ulaci I, Dudamell NV, Ga’lvez F, Yi S, Pe’rez-Prado MT, Hurtado I. Mechanical behavior and microstructural evolution of a Mg AZ31 sheet at dynamic strain rates. Acta Materialia. 2010;58:2988.CrossRef Ulaci I, Dudamell NV, Ga’lvez F, Yi S, Pe’rez-Prado MT, Hurtado I. Mechanical behavior and microstructural evolution of a Mg AZ31 sheet at dynamic strain rates. Acta Materialia. 2010;58:2988.CrossRef
6.
go back to reference Wan G, Wu BL, Zhang YD, Sha GY, Esling C. Anisotropy of dynamic behavior of extruded AZ31 magnesium alloy. Mater Sci Eng A. 2010;527:2915.CrossRef Wan G, Wu BL, Zhang YD, Sha GY, Esling C. Anisotropy of dynamic behavior of extruded AZ31 magnesium alloy. Mater Sci Eng A. 2010;527:2915.CrossRef
7.
go back to reference Song W, Beggs P, Easton M. Compressive strain-rate sensitivity of magnesium–aluminum die casting alloys. Mater Des. 2009;30:642.CrossRef Song W, Beggs P, Easton M. Compressive strain-rate sensitivity of magnesium–aluminum die casting alloys. Mater Des. 2009;30:642.CrossRef
8.
go back to reference Yang Y, Wang F, Tan C, Wu Y, Cai H. Plastic deformation mechanisms of AZ31 magnesium alloy under high strain rate compression. Trans Nonferrous Metals Soc China. 2008;18:1043.CrossRef Yang Y, Wang F, Tan C, Wu Y, Cai H. Plastic deformation mechanisms of AZ31 magnesium alloy under high strain rate compression. Trans Nonferrous Metals Soc China. 2008;18:1043.CrossRef
9.
go back to reference Fan Y, Wang Q, Ning J, Chen J, Ji W. Experimental measure of parameters: the Johnson–cook material model of extruded mg–Gd–Y series alloy. J Appl Mech. 2010;77(5):051902–051902-5.CrossRef Fan Y, Wang Q, Ning J, Chen J, Ji W. Experimental measure of parameters: the Johnson–cook material model of extruded mg–Gd–Y series alloy. J Appl Mech. 2010;77(5):051902–051902-5.CrossRef
10.
go back to reference El-Magd E, Abouridouane M. Characterization, modelling and simulation of deformation and fracture behaviour of the light-weight wrought alloys under high strain rate loading. In J Impact Eng. 2006;32:741.CrossRef El-Magd E, Abouridouane M. Characterization, modelling and simulation of deformation and fracture behaviour of the light-weight wrought alloys under high strain rate loading. In J Impact Eng. 2006;32:741.CrossRef
11.
go back to reference Asgari H, Szpunar JA, Odeshi AG. Texture evolution and dynamic mechanical behavior of cast AZ magnesium alloys under high strain rate compressive loading. Mater Des. 2014;61:26.CrossRef Asgari H, Szpunar JA, Odeshi AG. Texture evolution and dynamic mechanical behavior of cast AZ magnesium alloys under high strain rate compressive loading. Mater Des. 2014;61:26.CrossRef
12.
go back to reference Shang SL, Wang WY, Zhou BC, Wang Y, Darling KA, Kecskes LJ, Mathaudhu SN, Liu ZK. Generalized stacking fault energy, ideal strength and twinnability of dilute mg-based alloys: a first-principles study of shear deformation. Acta Mater. 2014;67:168.CrossRef Shang SL, Wang WY, Zhou BC, Wang Y, Darling KA, Kecskes LJ, Mathaudhu SN, Liu ZK. Generalized stacking fault energy, ideal strength and twinnability of dilute mg-based alloys: a first-principles study of shear deformation. Acta Mater. 2014;67:168.CrossRef
13.
go back to reference Asgari H, Odeshi AG, Szpunar JA. On dynamic deformation behavior of WE43 magnesium alloy sheet under shock loading conditions. Mater Des. 2014;63:552.CrossRef Asgari H, Odeshi AG, Szpunar JA. On dynamic deformation behavior of WE43 magnesium alloy sheet under shock loading conditions. Mater Des. 2014;63:552.CrossRef
14.
go back to reference Duan GS, Wu BL, Du XH, Zhao X, Zhang YD, Zuo L, Esling C. Nanostructured extension twins in rapidly compressed mg–3.0 al–1.0 Zn alloy. Mater Sci Eng A. 2014;614:75.CrossRef Duan GS, Wu BL, Du XH, Zhao X, Zhang YD, Zuo L, Esling C. Nanostructured extension twins in rapidly compressed mg–3.0 al–1.0 Zn alloy. Mater Sci Eng A. 2014;614:75.CrossRef
15.
go back to reference Gao CY, Zhang LC, Guo WG, Li YL, Lu WR, Ke YL. Dynamic plasticity of AZ31 magnesium alloy: experimental investigation and constitutive modeling. Mater Sci Eng A. 2014;613:379.CrossRef Gao CY, Zhang LC, Guo WG, Li YL, Lu WR, Ke YL. Dynamic plasticity of AZ31 magnesium alloy: experimental investigation and constitutive modeling. Mater Sci Eng A. 2014;613:379.CrossRef
16.
go back to reference García-Grajales JA, Fernández A, Leary D, Jérusalem A. A new strain rate dependent continuum framework for mg alloys. Comput Mater Sci. 2016;115:41.CrossRef García-Grajales JA, Fernández A, Leary D, Jérusalem A. A new strain rate dependent continuum framework for mg alloys. Comput Mater Sci. 2016;115:41.CrossRef
17.
go back to reference Wang M, Lu L, Li C, Xiao XH, Zhou XM, Zhu J, Luo SN. Deformation and spallation of a magnesium alloy under high strain rate loading. Mater Sci Eng A. 2016;661:126.CrossRef Wang M, Lu L, Li C, Xiao XH, Zhou XM, Zhu J, Luo SN. Deformation and spallation of a magnesium alloy under high strain rate loading. Mater Sci Eng A. 2016;661:126.CrossRef
18.
go back to reference Dixit N, Xie KY, Hemker KJ, Ramesh KT. Microstructural evolution of pure magnesium under high strain rate loading. Acta Mater. 2015;87:56.CrossRef Dixit N, Xie KY, Hemker KJ, Ramesh KT. Microstructural evolution of pure magnesium under high strain rate loading. Acta Mater. 2015;87:56.CrossRef
19.
go back to reference Guo C, Jiang F, Wu R, Zhang M. Effect of strain rate on compressive mechanical properties of extruded mg–8Li–1Al–1Ce alloy. Mater Des. 2013;49:110.CrossRef Guo C, Jiang F, Wu R, Zhang M. Effect of strain rate on compressive mechanical properties of extruded mg–8Li–1Al–1Ce alloy. Mater Des. 2013;49:110.CrossRef
20.
go back to reference Li Q. Microstructure and deformation mechanism of 0001 magnesium single crystal subjected to quasistatic and high-strain-rate compressive loadings. Mater Sci Eng A. 2013;568:96.CrossRef Li Q. Microstructure and deformation mechanism of 0001 magnesium single crystal subjected to quasistatic and high-strain-rate compressive loadings. Mater Sci Eng A. 2013;568:96.CrossRef
21.
go back to reference Li Q. Mechanical properties and microscopic deformation mechanism of polycrystalline magnesium under high-strain-rate compressive loadings. Mater Sci Eng A. 2012;540:130.CrossRef Li Q. Mechanical properties and microscopic deformation mechanism of polycrystalline magnesium under high-strain-rate compressive loadings. Mater Sci Eng A. 2012;540:130.CrossRef
22.
go back to reference Li Q. Dynamic mechanical response of magnesium single crystal under compression loading: experiments, model, and simulations. J Appl Phys. 2011;109:103514–103514-8.CrossRef Li Q. Dynamic mechanical response of magnesium single crystal under compression loading: experiments, model, and simulations. J Appl Phys. 2011;109:103514–103514-8.CrossRef
23.
go back to reference Armstrong RW, Li Q. Dislocation mechanics of high rate deformations. Metall Mater Trans A. 2015;46:4438.CrossRef Armstrong RW, Li Q. Dislocation mechanics of high rate deformations. Metall Mater Trans A. 2015;46:4438.CrossRef
24.
go back to reference Tucker MT, Horstemeyer MF, Gullett PM, El Kadiri H, Whittington WR. Anisotropic effects on the strain rate dependence of a wrought magnesium alloy. Scr Mater. 2009;60:182.CrossRef Tucker MT, Horstemeyer MF, Gullett PM, El Kadiri H, Whittington WR. Anisotropic effects on the strain rate dependence of a wrought magnesium alloy. Scr Mater. 2009;60:182.CrossRef
26.
go back to reference Majzoobi GH, Freshteh-Saniee F, Faraj Zadeh S, Khosroshahi HBM. Determination of materials parameters under dynamic loading. Part I: experiments and simulations. Comput Mater Sci. 2010;49:192.CrossRef Majzoobi GH, Freshteh-Saniee F, Faraj Zadeh S, Khosroshahi HBM. Determination of materials parameters under dynamic loading. Part I: experiments and simulations. Comput Mater Sci. 2010;49:192.CrossRef
27.
go back to reference Zerilli FJ, Armstrong RW. The effect of dislocation drag on the stress-strain behavior of F.C.C. Metals. Acta Metall Mater. 1992;40:1803.CrossRef Zerilli FJ, Armstrong RW. The effect of dislocation drag on the stress-strain behavior of F.C.C. Metals. Acta Metall Mater. 1992;40:1803.CrossRef
28.
go back to reference Zerilli FJ, Armstrong RW. Dislocation-mechanics-based constitutive relations for material dynamics calculations. J Appl Phys. 1987;61:1816.CrossRef Zerilli FJ, Armstrong RW. Dislocation-mechanics-based constitutive relations for material dynamics calculations. J Appl Phys. 1987;61:1816.CrossRef
29.
go back to reference Zerilli FJ, Armstrong RW. Dislocation mechanics based analysis of material dynamics behavior: enhanced ductility, deformation twinning, shock deformation, shear instability, dynamic recovery. J Phys IV France. 1997;01(C3):637. Zerilli FJ, Armstrong RW. Dislocation mechanics based analysis of material dynamics behavior: enhanced ductility, deformation twinning, shock deformation, shear instability, dynamic recovery. J Phys IV France. 1997;01(C3):637.
30.
go back to reference Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures. 7th international symposium on ballistics, Hague, Netherlands; 1983. p. 541. Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures. 7th international symposium on ballistics, Hague, Netherlands; 1983. p. 541.
31.
go back to reference Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech. 1985;21:31.CrossRef Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech. 1985;21:31.CrossRef
32.
go back to reference Steinberg DJ, Cochran SG, Guinan MW. A constitutive model for metals applicable at high-strain rate. J Appl Phys. 1980;51:1498.CrossRef Steinberg DJ, Cochran SG, Guinan MW. A constitutive model for metals applicable at high-strain rate. J Appl Phys. 1980;51:1498.CrossRef
33.
go back to reference Steinberg DJ, Lund CM. A constitutive model for strain rates from 10−4 to 106 s−1. J de Phys Colloq. 1988;49:3.CrossRef Steinberg DJ, Lund CM. A constitutive model for strain rates from 10−4 to 106 s−1. J de Phys Colloq. 1988;49:3.CrossRef
34.
go back to reference Follansbee PS, Kocks UF. A constitutive description of the deformation of copper based on the use of the mechanical threshold. Acta Metall. 1988;36:81.CrossRef Follansbee PS, Kocks UF. A constitutive description of the deformation of copper based on the use of the mechanical threshold. Acta Metall. 1988;36:81.CrossRef
35.
go back to reference Goto DM, Bingert JF, Reed WR, Garrett RK Jr. Anisotropy-corrected MTS constitutive strength modeling in HY-100 steel. Scr Mater. 2000;42:1125.CrossRef Goto DM, Bingert JF, Reed WR, Garrett RK Jr. Anisotropy-corrected MTS constitutive strength modeling in HY-100 steel. Scr Mater. 2000;42:1125.CrossRef
36.
go back to reference Kocks UF. Realistic constitutive relations for metal plasticity. Mater Sci Eng A. 2001;317:181.CrossRef Kocks UF. Realistic constitutive relations for metal plasticity. Mater Sci Eng A. 2001;317:181.CrossRef
37.
go back to reference Preston DL, Tonks DL, Wallace DC. Model of plastic deformation for extreme loading conditions. J Appl Phys. 2003;93:211.CrossRef Preston DL, Tonks DL, Wallace DC. Model of plastic deformation for extreme loading conditions. J Appl Phys. 2003;93:211.CrossRef
38.
go back to reference Frew DJ, Forrestal MJ, Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech. 2002;42:93.CrossRef Frew DJ, Forrestal MJ, Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech. 2002;42:93.CrossRef
39.
go back to reference Gray III GT. Kuhn H, Medlin D, editors. Classic Split-Hopkinson Pressure Bar Testing. ASM handbook: mechanical testing and evaluation, vol. 8. Metals Park (OH): ASM International; 2000. p. 462. Gray III GT. Kuhn H, Medlin D, editors. Classic Split-Hopkinson Pressure Bar Testing. ASM handbook: mechanical testing and evaluation, vol. 8. Metals Park (OH): ASM International; 2000. p. 462.
40.
go back to reference Boyer HE, Gall TL, editors. Metals handbook. 9th ed. Materials Park (OH): American Society for Metals; 1985. p. 190. Boyer HE, Gall TL, editors. Metals handbook. 9th ed. Materials Park (OH): American Society for Metals; 1985. p. 190.
41.
42.
go back to reference Sakino K, Shiori J. Dynamic flow stress response of aluminium to sudden reduction in strain rate at very high strain rates. J Phys IV France. 1991;01(C3):35–42.CrossRef Sakino K, Shiori J. Dynamic flow stress response of aluminium to sudden reduction in strain rate at very high strain rates. J Phys IV France. 1991;01(C3):35–42.CrossRef
Metadata
Title
Dynamic Compressive Mechanical Behavior of Magnesium-Based Materials: Magnesium Single Crystal, Polycrystalline Magnesium, and Magnesium Alloy
Author
Qizhen Li
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6884-3_61

Premium Partners