Skip to main content
Top
Published in:

22-06-2018

Dynamic Crushing Behaviors of Aluminum Foam Filled Energy Absorption Connectors

Authors: Yonghui Wang, Ximei Zhai

Published in: International Journal of Steel Structures | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presented the numerical studies on the dynamic crushing behaviors of the aluminum foam filled energy absorption connectors. The finite element (FE) model was firstly constructed and the accuracy of the FE model was verified by comparing the force–displacement curves from FE analyses with those from tests and analytical predictions. The numerical results revealed that the deformation mode of the connector under dynamic crushing evidently differed from that under quasi-static loading mainly due to the inertia effect. Besides, the energy absorption capacity was also improved when the dynamic crushing load was applied. Then, the parametric studies on the effects of crushing velocity–time history, angle between flat plate and pleated plate as well as pleated plate thickness on the energy absorption enhancements of the connectors were conducted. Based on the numerical results, two empirical equations were derived in terms of various parameters to predict the energy absorption enhancements of aluminum foam and pleated plate, which could be employed to obtain the force–displacement functions of the connectors under dynamic crushing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Amadio, C., & Bedon, C. (2012a). Viscoelastic spider connectors for the mitigation of cable-supported facades subjected to air blast loading. Engineering Structures, 42, 190–200.CrossRef Amadio, C., & Bedon, C. (2012a). Viscoelastic spider connectors for the mitigation of cable-supported facades subjected to air blast loading. Engineering Structures, 42, 190–200.CrossRef
go back to reference Amadio, C., & Bedon, C. (2012b). Elastoplastic dissipative devices for the mitigation of blast resisting cable-supported glazing façades. Engineering Structures, 39, 103–115.CrossRef Amadio, C., & Bedon, C. (2012b). Elastoplastic dissipative devices for the mitigation of blast resisting cable-supported glazing façades. Engineering Structures, 39, 103–115.CrossRef
go back to reference Amadio, C., & Bedon, C. (2014). FE assessment of dissipative devices for the blast mitigation of glazing facades supported by prestressed cables. Structural Engineering & Mechanics, 51(1), 141–162.CrossRef Amadio, C., & Bedon, C. (2014). FE assessment of dissipative devices for the blast mitigation of glazing facades supported by prestressed cables. Structural Engineering & Mechanics, 51(1), 141–162.CrossRef
go back to reference Baroutaji, A., Gilchrist, M. D., & Olabi, A. G. (2016). Quasi-static, impact and energy absorption of internally nested tubes subjected to lateral loading. Thin-Walled Structures, 98, 337–350.CrossRef Baroutaji, A., Gilchrist, M. D., & Olabi, A. G. (2016). Quasi-static, impact and energy absorption of internally nested tubes subjected to lateral loading. Thin-Walled Structures, 98, 337–350.CrossRef
go back to reference Baroutaji, A., Gilchrist, M. D., Smyth, D., & Olabi, A. G. (2015a). Crush analysis and multi-objective optimization design for circular tube under quasi-static lateral loading. Thin-Walled Structures, 86, 121–131.CrossRef Baroutaji, A., Gilchrist, M. D., Smyth, D., & Olabi, A. G. (2015a). Crush analysis and multi-objective optimization design for circular tube under quasi-static lateral loading. Thin-Walled Structures, 86, 121–131.CrossRef
go back to reference Baroutaji, A., Gilchrist, M. D., Smyth, D., & Olabi, A. G. (2015b). Analysis and optimization of sandwich tubes energy absorbers under lateral loading. International Journal of Impact Engineering, 82, 74–88.CrossRef Baroutaji, A., Gilchrist, M. D., Smyth, D., & Olabi, A. G. (2015b). Analysis and optimization of sandwich tubes energy absorbers under lateral loading. International Journal of Impact Engineering, 82, 74–88.CrossRef
go back to reference Baroutaji, A., Morris, E., & Olabi, A. G. (2014). Quasi-static response and multi-objective crashworthiness optimization of oblong tube under lateral loading. Thin-Walled Structures, 82, 262–277.CrossRef Baroutaji, A., Morris, E., & Olabi, A. G. (2014). Quasi-static response and multi-objective crashworthiness optimization of oblong tube under lateral loading. Thin-Walled Structures, 82, 262–277.CrossRef
go back to reference Chen, X., Gao, G., Dong, H., & Li, J. (2016). Experimental and numerical investigations of a splitting-bending steel plate energy absorber. Thin-Walled Structures, 98, 384–391.CrossRef Chen, X., Gao, G., Dong, H., & Li, J. (2016). Experimental and numerical investigations of a splitting-bending steel plate energy absorber. Thin-Walled Structures, 98, 384–391.CrossRef
go back to reference Fan, H., Hong, W., Sun, F., Xu, Y., & Jin, F. (2015). Lateral compression behaviors of thin-walled equilateral triangular tubes. International Journal of Steel Structures, 15(4), 785–795.CrossRef Fan, H., Hong, W., Sun, F., Xu, Y., & Jin, F. (2015). Lateral compression behaviors of thin-walled equilateral triangular tubes. International Journal of Steel Structures, 15(4), 785–795.CrossRef
go back to reference Fan, Z., Shen, J., Lu, G., & Ruan, D. (2013). Dynamic lateral crushing of empty and sandwich tubes. International Journal of Impact Engineering, 53, 3–16.CrossRef Fan, Z., Shen, J., Lu, G., & Ruan, D. (2013). Dynamic lateral crushing of empty and sandwich tubes. International Journal of Impact Engineering, 53, 3–16.CrossRef
go back to reference Gupta, N. K., Sekhon, G. S., & Gupta, P. K. (2005). Study of lateral compression of round metallic tubes. Thin-Walled Structures, 43, 895–992.CrossRef Gupta, N. K., Sekhon, G. S., & Gupta, P. K. (2005). Study of lateral compression of round metallic tubes. Thin-Walled Structures, 43, 895–992.CrossRef
go back to reference Hall, I. W., Guden, M., & Claar, T. D. (2002). Transverse and longitudinal crushing of aluminum-foam filled tubes. Scripta Materialia, 46, 513–518.CrossRef Hall, I. W., Guden, M., & Claar, T. D. (2002). Transverse and longitudinal crushing of aluminum-foam filled tubes. Scripta Materialia, 46, 513–518.CrossRef
go back to reference Hallissy G, Higbie WG, Fyfe ER. Blast resistant prefabricated wall units. US Patent, Pub. No.: US2005/0144900 A1, 2005. Hallissy G, Higbie WG, Fyfe ER. Blast resistant prefabricated wall units. US Patent, Pub. No.: US2005/0144900 A1, 2005.
go back to reference Hallquist, J. O. (2006). LS-DYNA theory manual, Livermore Software Technology Corporation (LSTC). California, USA: Livermore. Hallquist, J. O. (2006). LS-DYNA theory manual, Livermore Software Technology Corporation (LSTC). California, USA: Livermore.
go back to reference Hallquist, J. O. (2012). LS-DYNA keyword user’s manual, Livermore Software Technology Corporation (LSTC). California, USA: Livermore. Hallquist, J. O. (2012). LS-DYNA keyword user’s manual, Livermore Software Technology Corporation (LSTC). California, USA: Livermore.
go back to reference Hanssen, A. G., Hopperstad, O. S., Langseth, M., & Ilstand, H. (2002). Validation of constitutive models applicable to aluminium foams. International Journal of Mechanical Sciences, 44, 359–406.CrossRef Hanssen, A. G., Hopperstad, O. S., Langseth, M., & Ilstand, H. (2002). Validation of constitutive models applicable to aluminium foams. International Journal of Mechanical Sciences, 44, 359–406.CrossRef
go back to reference Huang, Z., & Liew, J. Y. R. (2016). Compressive resistance of steel-concrete-steel sandwich composite walls with J-hook connectors. Journal of Constructional Steel Research, 124, 142–162.CrossRef Huang, Z., & Liew, J. Y. R. (2016). Compressive resistance of steel-concrete-steel sandwich composite walls with J-hook connectors. Journal of Constructional Steel Research, 124, 142–162.CrossRef
go back to reference Huang, Z., Liew, J. Y. R., Xiong, M., & Wang, J. (2015). Structural behaviour of double skin composite system using ultra-lightweight cement composite. Construction and Building Materials, 86, 51–63.CrossRef Huang, Z., Liew, J. Y. R., Xiong, M., & Wang, J. (2015). Structural behaviour of double skin composite system using ultra-lightweight cement composite. Construction and Building Materials, 86, 51–63.CrossRef
go back to reference Jones, N. (1988). Structural impact. Cambridge/New York: Cambridge University Press. Jones, N. (1988). Structural impact. Cambridge/New York: Cambridge University Press.
go back to reference McDevitt, T. J., & Simmonds, J. G. (2003). Crushing of an elastic-plastic ring between rigid plates with and without unloading. Journal of Applied Mechanics, 70, 799–808.CrossRefMATH McDevitt, T. J., & Simmonds, J. G. (2003). Crushing of an elastic-plastic ring between rigid plates with and without unloading. Journal of Applied Mechanics, 70, 799–808.CrossRefMATH
go back to reference Ngo, T., Ding, C., Lumantarna, R., Ghazlan, A., & Zobec, M. (2015). Structural performance of double-skin façade systems subjected to blast pressures. Journal of Structural Engineering, 141(12), 04015064.CrossRef Ngo, T., Ding, C., Lumantarna, R., Ghazlan, A., & Zobec, M. (2015). Structural performance of double-skin façade systems subjected to blast pressures. Journal of Structural Engineering, 141(12), 04015064.CrossRef
go back to reference Niknejad, A., & Orojloo, P. H. (2016). A novel nested system of tubes with special cross-section as the energy absorber. Thin-Walled Structures, 100, 113–123.CrossRef Niknejad, A., & Orojloo, P. H. (2016). A novel nested system of tubes with special cross-section as the energy absorber. Thin-Walled Structures, 100, 113–123.CrossRef
go back to reference Olabi, A. G., Morris, E., Hashmi, M. S. J., & Gilchrist, M. D. (2008a). Optimised design of nested circular tube energy absorbers under lateral impact loading. International Journal of Mechanical Sciences, 50, 104–116.CrossRef Olabi, A. G., Morris, E., Hashmi, M. S. J., & Gilchrist, M. D. (2008a). Optimised design of nested circular tube energy absorbers under lateral impact loading. International Journal of Mechanical Sciences, 50, 104–116.CrossRef
go back to reference Olabi, A. G., Morris, E., Hashmi, M. S. J., & Gilchrist, M. D. (2008b). Optimised design of nested oblong tube energy absorbers under lateral impact loading. International Journal of Impact Engineering, 35, 10–26.CrossRef Olabi, A. G., Morris, E., Hashmi, M. S. J., & Gilchrist, M. D. (2008b). Optimised design of nested oblong tube energy absorbers under lateral impact loading. International Journal of Impact Engineering, 35, 10–26.CrossRef
go back to reference Qi, C., Yang, S., Yang, L. J., Wei, Z. Y., & Lu, Z. H. (2013). Blast resistance and multi-objective optimization of aluminum foam-cored sandwich panels. Composite Structures, 105, 45–57.CrossRef Qi, C., Yang, S., Yang, L. J., Wei, Z. Y., & Lu, Z. H. (2013). Blast resistance and multi-objective optimization of aluminum foam-cored sandwich panels. Composite Structures, 105, 45–57.CrossRef
go back to reference Reyes, A., Hopperstad, O. S., Berstad, T., Hanssen, A. G., & Langseth, M. (2003). Constitutive modeling of aluminum foam including fracture and statistical variation of density. European Journal of Mechanics A/Solids, 22, 815–835.CrossRefMATH Reyes, A., Hopperstad, O. S., Berstad, T., Hanssen, A. G., & Langseth, M. (2003). Constitutive modeling of aluminum foam including fracture and statistical variation of density. European Journal of Mechanics A/Solids, 22, 815–835.CrossRefMATH
go back to reference Reyes, A., Hopperstad, O. S., Hanssen, A. G., & Langseth, M. (2004a). Modeling of material failure in foam-based components. International Journal of Impact Engineering, 30, 805–834.CrossRef Reyes, A., Hopperstad, O. S., Hanssen, A. G., & Langseth, M. (2004a). Modeling of material failure in foam-based components. International Journal of Impact Engineering, 30, 805–834.CrossRef
go back to reference Reyes, A., Hopperstad, O. S., & Langseth, M. (2004b). Aluminum foam-filled extrusions subjected to oblique loading: Experimental and numerical study. International Journal of Solids and Structures, 41, 1645–1675.CrossRef Reyes, A., Hopperstad, O. S., & Langseth, M. (2004b). Aluminum foam-filled extrusions subjected to oblique loading: Experimental and numerical study. International Journal of Solids and Structures, 41, 1645–1675.CrossRef
go back to reference Santosa, S. P., Wierzbicki, T., Hanssen, A. G., & Langseth, M. (2000). Experimental and numerical studies of foam-filled sections. International Journal of Impact Engineering, 24, 509–534.CrossRef Santosa, S. P., Wierzbicki, T., Hanssen, A. G., & Langseth, M. (2000). Experimental and numerical studies of foam-filled sections. International Journal of Impact Engineering, 24, 509–534.CrossRef
go back to reference Shahbeyk, S., Petrinic, N., & Vafai, A. (2007). Numerical modelling of dynamically loaded metal foam-filled square columns. International Journal of Impact Engineering, 34, 573–586.CrossRef Shahbeyk, S., Petrinic, N., & Vafai, A. (2007). Numerical modelling of dynamically loaded metal foam-filled square columns. International Journal of Impact Engineering, 34, 573–586.CrossRef
go back to reference Shen, J., Lu, G., Ruan, D., & Seah, C. C. (2015). Lateral plastic collapse of sandwich tubes with metal foam core. International Journal of Mechanical Sciences, 91, 99–109.CrossRef Shen, J., Lu, G., Ruan, D., & Seah, C. C. (2015). Lateral plastic collapse of sandwich tubes with metal foam core. International Journal of Mechanical Sciences, 91, 99–109.CrossRef
go back to reference Shim, C. S., Yun, N. R., Shin, D. H., & Yu, I. H. (2013). Design of protective structures with aluminum foam panels. International Journal of Steel Structures, 13(1), 1–10.CrossRef Shim, C. S., Yun, N. R., Shin, D. H., & Yu, I. H. (2013). Design of protective structures with aluminum foam panels. International Journal of Steel Structures, 13(1), 1–10.CrossRef
go back to reference Smith, R., Altenhof, W., & Lapain, M. (2016). Transverse impact loading of aluminum foam filled braided stainless steel tubes. International Journal of Impact Engineering, 88, 214–226.CrossRef Smith, R., Altenhof, W., & Lapain, M. (2016). Transverse impact loading of aluminum foam filled braided stainless steel tubes. International Journal of Impact Engineering, 88, 214–226.CrossRef
go back to reference Su, X. Y., Yu, T. X., & Reid, S. R. (1995a). Inertia-sensitive impact energy-absorbing structures part I: Effects of inertia and elasticity. International Journal of Impact Engineering, 16(4), 651–672.CrossRef Su, X. Y., Yu, T. X., & Reid, S. R. (1995a). Inertia-sensitive impact energy-absorbing structures part I: Effects of inertia and elasticity. International Journal of Impact Engineering, 16(4), 651–672.CrossRef
go back to reference Su, X. Y., Yu, T. X., & Reid, S. R. (1995b). Inertia-sensitive impact energy-absorbing structures part II: Effects of strain rate. International Journal of Impact Engineering, 6(4), 673–689.CrossRef Su, X. Y., Yu, T. X., & Reid, S. R. (1995b). Inertia-sensitive impact energy-absorbing structures part II: Effects of strain rate. International Journal of Impact Engineering, 6(4), 673–689.CrossRef
go back to reference Wang, C. Y. (1987). Crushing of an elastic-perfectly plastic ring or tube between two planes. Journal of Applied Mechanics, 54, 159–164.CrossRef Wang, C. Y. (1987). Crushing of an elastic-perfectly plastic ring or tube between two planes. Journal of Applied Mechanics, 54, 159–164.CrossRef
go back to reference Wang, Y., & Liew, J. Y. R. (2015). Blast performance of water tank with energy absorbing support. Thin-Walled Structures, 96, 1–10.CrossRef Wang, Y., & Liew, J. Y. R. (2015). Blast performance of water tank with energy absorbing support. Thin-Walled Structures, 96, 1–10.CrossRef
go back to reference Wang, Y., Liew, J. Y. R., & Lee, S. C. (2015). Structural performance of water tank under static and dynamic pressure loading. International Journal of Impact Engineering, 85, 110–123.CrossRef Wang, Y., Liew, J. Y. R., & Lee, S. C. (2015). Structural performance of water tank under static and dynamic pressure loading. International Journal of Impact Engineering, 85, 110–123.CrossRef
go back to reference Wang, Y., Liew, J. Y. R., & Lee, S. C. (2016). A novel multi-functional water façade system for energy saving and blast resisting. Materials and Design, 106, 98–111.CrossRef Wang, Y., Liew, J. Y. R., & Lee, S. C. (2016). A novel multi-functional water façade system for energy saving and blast resisting. Materials and Design, 106, 98–111.CrossRef
go back to reference Wang, Y., Liew, J. Y. R., Lee, S. C., & Wang, W. (2017a). Experimental and analytical studies of a novel aluminum foam filled energy absorption connector under quasi-static compression loading. Engineering Structures, 131, 136–147.CrossRef Wang, Y., Liew, J. Y. R., Lee, S. C., & Wang, W. (2017a). Experimental and analytical studies of a novel aluminum foam filled energy absorption connector under quasi-static compression loading. Engineering Structures, 131, 136–147.CrossRef
go back to reference Wang, Y., Liew, J. Y. R., Lee, S. C., Zhai, X., & Wang, W. (2017b). Crushing of a novel energy absorption connector with curved plate and aluminum foam as energy absorber. Thin-Walled Structures, 111, 145–154.CrossRef Wang, Y., Liew, J. Y. R., Lee, S. C., Zhai, X., & Wang, W. (2017b). Crushing of a novel energy absorption connector with curved plate and aluminum foam as energy absorber. Thin-Walled Structures, 111, 145–154.CrossRef
go back to reference Wang, Y., Zhai, X., & Wang, W. (2017c). Numerical studies of aluminum foam filled energy absorption connectors under quasi-static compression loading. Thin-Walled Structures, 116, 225–233.CrossRef Wang, Y., Zhai, X., & Wang, W. (2017c). Numerical studies of aluminum foam filled energy absorption connectors under quasi-static compression loading. Thin-Walled Structures, 116, 225–233.CrossRef
go back to reference Whitney, M. G. (1996). Blast damage mitigation using reinforced concrete panels and energy absorbing connectors. San Antonio, TX: Wilfred Baker Engineering Inc. Whitney, M. G. (1996). Blast damage mitigation using reinforced concrete panels and energy absorbing connectors. San Antonio, TX: Wilfred Baker Engineering Inc.
go back to reference Yang, S., & Qi, C. (2013). Multiobjective optimization for empty and foam-filled square columns under oblique impact loading. International Journal of Impact Engineering, 54, 177–191.CrossRef Yang, S., & Qi, C. (2013). Multiobjective optimization for empty and foam-filled square columns under oblique impact loading. International Journal of Impact Engineering, 54, 177–191.CrossRef
go back to reference Zhang, X., Cheng, G., & Zhang, H. (2009). Numerical investigations on a new type of energy-absorbing structure based on free inversion of tubes. International Journal of Mechanical Sciences, 51, 64–76.CrossRefMATH Zhang, X., Cheng, G., & Zhang, H. (2009). Numerical investigations on a new type of energy-absorbing structure based on free inversion of tubes. International Journal of Mechanical Sciences, 51, 64–76.CrossRefMATH
go back to reference Zhang, X., Hao, H., & Wang, Z. (2015). Experimental study of laminated glass window responses under impulsive and blast loading. International Journal of Impact Engineering, 78, 1–19.CrossRef Zhang, X., Hao, H., & Wang, Z. (2015). Experimental study of laminated glass window responses under impulsive and blast loading. International Journal of Impact Engineering, 78, 1–19.CrossRef
go back to reference Zhu, H., & Khanna, S. K. (2016). Dynamic response of a novel laminated glass panel using a transparent glass fiber-reinforced composite interlayer under blast loading. International Journal of Impact Engineering, 89, 14–24.CrossRef Zhu, H., & Khanna, S. K. (2016). Dynamic response of a novel laminated glass panel using a transparent glass fiber-reinforced composite interlayer under blast loading. International Journal of Impact Engineering, 89, 14–24.CrossRef
Metadata
Title
Dynamic Crushing Behaviors of Aluminum Foam Filled Energy Absorption Connectors
Authors
Yonghui Wang
Ximei Zhai
Publication date
22-06-2018
Publisher
Korean Society of Steel Construction
Published in
International Journal of Steel Structures / Issue 1/2019
Print ISSN: 1598-2351
Electronic ISSN: 2093-6311
DOI
https://doi.org/10.1007/s13296-018-0113-z

Premium Partners