Skip to main content
Top
Published in:

10-10-2022

Dynamic Emergency Transit Forecasting with IoT Sequential Data

Authors: Bin Sun, Renkang Geng, Tao Shen, Yuan Xu, Shuhui Bi

Published in: Mobile Networks and Applications | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Medical emergency transit counts minutes as real human lives. It is important to plan emergency transport routes according to real-time traffic flow status which leads to the the essential requirement of correct dynamic traffic prediction. Many Internet of Things (IoT) devices have been employed to assist emergency transit. Dynamic traffic flow patterns can be better predicted using data given by those devices. In small cities, however, the data are sent into separated management offices or just saved inside edge devices due to system compatibility or the cost of mobile network to computer centres. This condition leads to small and local datasets. Making full use of small local data to conduct prediction is one way to solve local emergency planning problems. In this work, we design a dynamic graph structure to work with Graph Neural Network (GNN) algorithm to forecast traffic flow levels considering this scenario. The proposed graph considers both geographical and time information with the potential to grow within a local mobile communication network. The commonly used Extreme Gradient Boosting (XGBoost) is included in the comparison. Experimental results show that our new design provides high prediction efficiency and accuracy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
go back to reference McMeekin P, Gray J, Ford GA, Duckett J, Price CI (2014) A comparison of actual versus predicted emergency ambulance journey times using generic geographic information system software. Emerg Med J 31(9):758–762CrossRef McMeekin P, Gray J, Ford GA, Duckett J, Price CI (2014) A comparison of actual versus predicted emergency ambulance journey times using generic geographic information system software. Emerg Med J 31(9):758–762CrossRef
2.
go back to reference Kusiak A, Zheng H, Song Z (2009) Short-term prediction of wind farm power : A data mining approach. IEEE Trans Energy Convers 24(1):125–136CrossRef Kusiak A, Zheng H, Song Z (2009) Short-term prediction of wind farm power : A data mining approach. IEEE Trans Energy Convers 24(1):125–136CrossRef
3.
go back to reference Wang SH, Nayak DR, Guttery DS, Zhang X, Zhang YD (2021) COVID-19 classification by CCSHNet with deep fusion using transfer learning and discriminant correlation analysis. Inf Fusion 68:131–148CrossRef Wang SH, Nayak DR, Guttery DS, Zhang X, Zhang YD (2021) COVID-19 classification by CCSHNet with deep fusion using transfer learning and discriminant correlation analysis. Inf Fusion 68:131–148CrossRef
4.
go back to reference Wang SH, Govindaraj VV, Górriz JM, Zhang X, Zhang YD (2021) Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network. Inf Fusion 67:208–229CrossRef Wang SH, Govindaraj VV, Górriz JM, Zhang X, Zhang YD (2021) Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network. Inf Fusion 67:208–229CrossRef
5.
go back to reference Manibardo EL, Laña I, Del Ser J (2021) Deep learning for road traffic forecasting : does it make a difference?. IEEE Trans Intell Transp Syst, pp 1–25 Manibardo EL, Laña I, Del Ser J (2021) Deep learning for road traffic forecasting : does it make a difference?. IEEE Trans Intell Transp Syst, pp 1–25
6.
go back to reference Chong E, Han C, Park FC (2017) Deep learning networks for stock market analysis and prediction: methodology, data representations, and case studies. Expert Syst Appl 83:187–205CrossRef Chong E, Han C, Park FC (2017) Deep learning networks for stock market analysis and prediction: methodology, data representations, and case studies. Expert Syst Appl 83:187–205CrossRef
7.
go back to reference Wang X, Ma Y, Wang Y, Jin W, Wang X, Tang J, Jia C, Yu J (2020) Traffic flow prediction via spatial temporal graph neural network. Proceedings of the web conference 2020:1082–1092 Wang X, Ma Y, Wang Y, Jin W, Wang X, Tang J, Jia C, Yu J (2020) Traffic flow prediction via spatial temporal graph neural network. Proceedings of the web conference 2020:1082–1092
8.
go back to reference Sun B, Ma L, Shen T, Geng R, Zhou Y, Tian Y (2021) A robust data-driven method for muti-seasonal and heteroscedastic iot time series preprocessing. Wirel Commun Mob Comput. WCMC, vol 6692390 Sun B, Ma L, Shen T, Geng R, Zhou Y, Tian Y (2021) A robust data-driven method for muti-seasonal and heteroscedastic iot time series preprocessing. Wirel Commun Mob Comput. WCMC, vol 6692390
9.
go back to reference Wang S, Celebi ME, Zhang YD, Yu X, Lu S, Yao X, Zhou Q, Miguel MG, Tian Y, Gorriz JM et al (2021) Advances in data preprocessing for biomedical data fusion : an overview of the methods, challenges, and prospects. Inf Fusion 76:376–421CrossRef Wang S, Celebi ME, Zhang YD, Yu X, Lu S, Yao X, Zhou Q, Miguel MG, Tian Y, Gorriz JM et al (2021) Advances in data preprocessing for biomedical data fusion : an overview of the methods, challenges, and prospects. Inf Fusion 76:376–421CrossRef
10.
go back to reference Chernyshev M, Baig Z, Bello O, Zeadally S (2014) Intelligent device-to-device communication in the internet of things. IEEE Syst J 10(3):1172–1182 Chernyshev M, Baig Z, Bello O, Zeadally S (2014) Intelligent device-to-device communication in the internet of things. IEEE Syst J 10(3):1172–1182
11.
go back to reference Roth EM, Bennett KB, Woods DD (1987) Human interaction with an intelligent machine. Int J Man-Mach Stud 27(5–6):479–525CrossRef Roth EM, Bennett KB, Woods DD (1987) Human interaction with an intelligent machine. Int J Man-Mach Stud 27(5–6):479–525CrossRef
13.
go back to reference Jain NK, Saini RK, Mittal P (2019) A review on traffic monitoring system techniques. In: Soft computing: theories and applications. Springer, pp 569–577 Jain NK, Saini RK, Mittal P (2019) A review on traffic monitoring system techniques. In: Soft computing: theories and applications. Springer, pp 569–577
14.
go back to reference Huang H, Chang F, Schwebel DC, Ning P, Cheng P, Hu G (2018) Improve traffic death statistics in China. Science 362(6415):650–650CrossRef Huang H, Chang F, Schwebel DC, Ning P, Cheng P, Hu G (2018) Improve traffic death statistics in China. Science 362(6415):650–650CrossRef
15.
go back to reference Li S, Xu LD, Zhao S (2015) The internet of things: A survey. Inf Syst Front 17(2):243–259CrossRef Li S, Xu LD, Zhao S (2015) The internet of things: A survey. Inf Syst Front 17(2):243–259CrossRef
17.
go back to reference Friedman JH (2001) Greedy function approximation: A gradient boosting machine. Ann Stat, pp 1189–1232 Friedman JH (2001) Greedy function approximation: A gradient boosting machine. Ann Stat, pp 1189–1232
18.
go back to reference Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd international conference on knowledge discovery and data mining, pp 785–794 Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd international conference on knowledge discovery and data mining, pp 785–794
19.
go back to reference Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY (2017) Lightgbm: A highly efficient gradient boosting decision tree. Adv Neural Inf Process Syst 30:3146–3154 Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY (2017) Lightgbm: A highly efficient gradient boosting decision tree. Adv Neural Inf Process Syst 30:3146–3154
20.
go back to reference Parpinelli RS, Lopes HS, Freitas AA (2002) Data mining with an ant colony optimization algorithm. IEEE Trans Evol Comput 6(4):321–332CrossRef Parpinelli RS, Lopes HS, Freitas AA (2002) Data mining with an ant colony optimization algorithm. IEEE Trans Evol Comput 6(4):321–332CrossRef
21.
go back to reference Albawi S, Mohammed TA, Al-Zawi S (2017) Understanding of a convolutional neural network. In: 2017 International conference on engineering and technology (ICET) Ieee. pp 1–6 Albawi S, Mohammed TA, Al-Zawi S (2017) Understanding of a convolutional neural network. In: 2017 International conference on engineering and technology (ICET) Ieee. pp 1–6
22.
go back to reference Mikolov T, Karafiát M, Burget L, Cernockỳ J, Khudanpur S (2010) Recurrent neural network based language model. In: Interspeech, vol 2. Makuhari, pp 1045–1048 Mikolov T, Karafiát M, Burget L, Cernockỳ J, Khudanpur S (2010) Recurrent neural network based language model. In: Interspeech, vol 2. Makuhari, pp 1045–1048
23.
go back to reference Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z, et al (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4681–4690 Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z, et al (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4681–4690
24.
go back to reference Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2008) The graph neural network model. IEEE Trans Neural Netw 20(1):61–80CrossRef Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2008) The graph neural network model. IEEE Trans Neural Netw 20(1):61–80CrossRef
25.
go back to reference Shi X, Li Y, Li H, Guan R, Wang L, Liang Y (2010) An integrated algorithm based on artificial bee colony and particle swarm optimization. In: 2010 Sixth international conference on natural computation, vol 5, pp 2586–2590. IEEE Shi X, Li Y, Li H, Guan R, Wang L, Liang Y (2010) An integrated algorithm based on artificial bee colony and particle swarm optimization. In: 2010 Sixth international conference on natural computation, vol 5, pp 2586–2590. IEEE
26.
go back to reference Lewis RJ (2000) An introduction to classification and regression tree (CART) analysis. In: Annual meeting of the society for academic emergency medicine in san francisco, California, vol 14. Citeseer Lewis RJ (2000) An introduction to classification and regression tree (CART) analysis. In: Annual meeting of the society for academic emergency medicine in san francisco, California, vol 14. Citeseer
27.
go back to reference Shen Y, Wu Y, Zhang Y, Shan C, Zhang J, Letaief BK, Li D (2021) How powerful is graph convolution for recommendation? In: Proceedings of the 30th ACM international conference on information & knowledge management, pp 1619–1629 Shen Y, Wu Y, Zhang Y, Shan C, Zhang J, Letaief BK, Li D (2021) How powerful is graph convolution for recommendation? In: Proceedings of the 30th ACM international conference on information & knowledge management, pp 1619–1629
28.
go back to reference Velǐcković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2017) Graph attention networks. arXiv:1710.10903 preprint:10.48550 Velǐcković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2017) Graph attention networks. arXiv:1710.10903 preprint:10.48550
29.
go back to reference Kipf TN, Welling M (2016) Variational graph auto-encoders. arXiv:1611.07308 preprint:10.48550 Kipf TN, Welling M (2016) Variational graph auto-encoders. arXiv:1611.07308 preprint:10.48550
30.
go back to reference Jin W, Yang K, Barzilay R, Jaakkola T (2018) Learning multimodal graph-to-graph translation for molecular optimization. arXiv:1812.01070 preprint:10.48550 Jin W, Yang K, Barzilay R, Jaakkola T (2018) Learning multimodal graph-to-graph translation for molecular optimization. arXiv:1812.01070 preprint:10.48550
31.
go back to reference Guo S, Lin Y, Feng N, Song C, Wan H (2019) Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. Proceedings of the AAAI conference on artificial intelligence 33:922–929CrossRef Guo S, Lin Y, Feng N, Song C, Wan H (2019) Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. Proceedings of the AAAI conference on artificial intelligence 33:922–929CrossRef
32.
go back to reference Shchur O, Mumme M, Bojchevski A, Günnemann S (2018) Pitfalls of graph neural network evaluation. arXiv:1811.05868 preprint:10.48550 Shchur O, Mumme M, Bojchevski A, Günnemann S (2018) Pitfalls of graph neural network evaluation. arXiv:1811.05868 preprint:10.48550
33.
go back to reference Manessi F, Rozza A, Manzo M (2020) Dynamic graph convolutional networks. Pattern Recognit 97CrossRef Manessi F, Rozza A, Manzo M (2020) Dynamic graph convolutional networks. Pattern Recognit 97CrossRef
34.
go back to reference Pareja A, Domeniconi G, Chen J, Ma T, Suzumura T, Kanezashi H, Kaler T, Schardl T, Leiserson C (2020) Evolvegcn: evolving graph convolutional networks for dynamic graphs. Proceedings of the AAAI conference on artificial intelligence 34:5363–5370CrossRef Pareja A, Domeniconi G, Chen J, Ma T, Suzumura T, Kanezashi H, Kaler T, Schardl T, Leiserson C (2020) Evolvegcn: evolving graph convolutional networks for dynamic graphs. Proceedings of the AAAI conference on artificial intelligence 34:5363–5370CrossRef
35.
go back to reference Sankar A, Wu Y, Gou L, Zhang W, Yang H (2020) Dysat: Deep neural representation learning on dynamic graphs via self-attention networks. In: Proceedings of the 13th international conference on web search and data mining, pp 519–527 Sankar A, Wu Y, Gou L, Zhang W, Yang H (2020) Dysat: Deep neural representation learning on dynamic graphs via self-attention networks. In: Proceedings of the 13th international conference on web search and data mining, pp 519–527
36.
go back to reference Jia Li, Zhichao Han, Hong Cheng, Jiao Su, Pengyun Wang, Jianfeng Zhang, and Lujia Pan (2019) Predicting Path Failure in Time-Evolving Graphs. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp 1279–1289 Jia Li, Zhichao Han, Hong Cheng, Jiao Su, Pengyun Wang, Jianfeng Zhang, and Lujia Pan (2019) Predicting Path Failure in Time-Evolving Graphs. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp 1279–1289
37.
go back to reference Wang J, Song G, Wu Y, Wang L (2020) Streaming graph neural networks via continual learning. In: Proceedings of the 29th ACM international conference on information & knowledge management, pp 1515–1524 Wang J, Song G, Wu Y, Wang L (2020) Streaming graph neural networks via continual learning. In: Proceedings of the 29th ACM international conference on information & knowledge management, pp 1515–1524
38.
go back to reference Kumar S, Zhang X, Leskovec J (2019) Predicting dynamic embedding trajectory in temporal interaction networks. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp 1269–1278 Kumar S, Zhang X, Leskovec J (2019) Predicting dynamic embedding trajectory in temporal interaction networks. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp 1269–1278
39.
go back to reference Knyazev B, Augusta C, Taylor GW (2019) Learning temporal attention in dynamic graphs with bilinear interactions. Plos One 16(3):e0247936CrossRef Knyazev B, Augusta C, Taylor GW (2019) Learning temporal attention in dynamic graphs with bilinear interactions. Plos One 16(3):e0247936CrossRef
40.
go back to reference Han Z, Ma Y, Wang Y, Günnemann S, Tresp V (2020) Graph hawkes neural network for forecasting on temporal knowledge graphs. arXiv:2003.13432 preprint:10.48550 Han Z, Ma Y, Wang Y, Günnemann S, Tresp V (2020) Graph hawkes neural network for forecasting on temporal knowledge graphs. arXiv:2003.13432 preprint:10.48550
41.
go back to reference Sun B, Cheng W, Goswami P, Bai G (2018) Short-term traffic forecasting using self-adjusting k-nearest neighbours. IET Intell Transp Syst 12(1):41–48CrossRef Sun B, Cheng W, Goswami P, Bai G (2018) Short-term traffic forecasting using self-adjusting k-nearest neighbours. IET Intell Transp Syst 12(1):41–48CrossRef
Metadata
Title
Dynamic Emergency Transit Forecasting with IoT Sequential Data
Authors
Bin Sun
Renkang Geng
Tao Shen
Yuan Xu
Shuhui Bi
Publication date
10-10-2022
Publisher
Springer US
Published in
Mobile Networks and Applications / Issue 6/2023
Print ISSN: 1383-469X
Electronic ISSN: 1572-8153
DOI
https://doi.org/10.1007/s11036-022-02027-0