Skip to main content
Top

2020 | OriginalPaper | Chapter

10. Dynamic Graph Embedding

Authors : Sujit Rokka Chhetri, Mohammad Abdullah Al Faruque

Published in: Data-Driven Modeling of Cyber-Physical Systems using Side-Channel Analysis

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In Chap. 9, we presented a structural graph convolutional neural network which is capable of performing supervising learning to estimate a function between non-euclidean data and categorical data. In this chapter, we focus on non-euclidean data which are evolving over time. In the cyber-physical system, most of the non-euclidean data (such as engineering data, energy, and signal flow graph, call graph of the firmware, etc.) are always evolving. Hence, it is necessary to utilize algorithms that are capable of handling such temporally evolving non-euclidean data. In this chapter, we present a novel dynamic graph embedding algorithm to handle this issue. In the rest of the chapter, we consider temporally evolving graphs as the non-euclidean data and present an algorithm capable of capturing the pattern of time-varying links.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gehrke, J., Ginsparg, P., & Kleinberg, J. (2003). Overview of the 2003 KDD cup. ACM SIGKDD Explorations, 5(2), 149–151.CrossRef Gehrke, J., Ginsparg, P., & Kleinberg, J. (2003). Overview of the 2003 KDD cup. ACM SIGKDD Explorations, 5(2), 149–151.CrossRef
2.
go back to reference Freeman, L. C. (2000). Visualizing social networks. Journal of Social Structure, 1(1), 4. Freeman, L. C. (2000). Visualizing social networks. Journal of Social Structure, 1(1), 4.
3.
go back to reference Theocharidis, A., Van Dongen, S., Enright, A., & Freeman, T. (2009). Network visualization and analysis of gene expression data using BioLayout Express 3D. Nature Protocols, 4, 1535–1550.CrossRef Theocharidis, A., Van Dongen, S., Enright, A., & Freeman, T. (2009). Network visualization and analysis of gene expression data using BioLayout Express 3D. Nature Protocols, 4, 1535–1550.CrossRef
4.
go back to reference Goyal, P., Sapienza, A., Ferrara, E. (2018). Recommending teammates with deep neural networks. In Proceedings of the 29th on Hypertext and Social Media (pp. 57–61). New York: ACM.CrossRef Goyal, P., Sapienza, A., Ferrara, E. (2018). Recommending teammates with deep neural networks. In Proceedings of the 29th on Hypertext and Social Media (pp. 57–61). New York: ACM.CrossRef
5.
go back to reference Pavlopoulos, G. A., Wegener, A.-L., & Schneider, R. (2008). A survey of visualization tools for biological network analysis. Biodata Mining, 1(1), 12.CrossRef Pavlopoulos, G. A., Wegener, A.-L., & Schneider, R. (2008). A survey of visualization tools for biological network analysis. Biodata Mining, 1(1), 12.CrossRef
6.
go back to reference Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications (Vol. 8). Cambridge: Cambridge University Press.CrossRef Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications (Vol. 8). Cambridge: Cambridge University Press.CrossRef
7.
go back to reference Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems, 151, 78–94.CrossRef Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems, 151, 78–94.CrossRef
8.
go back to reference Grover, A., & Leskovec, J. (2016). Node2vec: Scalable feature learning for networks. In Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining (pp. 855–864). New York: ACM. Grover, A., & Leskovec, J. (2016). Node2vec: Scalable feature learning for networks. In Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining (pp. 855–864). New York: ACM.
9.
go back to reference Ou, M., Cui, P., Pei, J., Zhang, Z., & Zhu, W. (2016). Asymmetric transitivity preserving graph embedding. In Proceedings of the 22nd ACM SIGKDD (pp. 1105–1114). Ou, M., Cui, P., Pei, J., Zhang, Z., & Zhu, W. (2016). Asymmetric transitivity preserving graph embedding. In Proceedings of the 22nd ACM SIGKDD (pp. 1105–1114).
10.
go back to reference Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V., & Smola, A. J. (2013). Distributed large-scale natural graph factorization. In Proceedings of the 22nd International Conference on World Wide Web (pp. 37–48). New York: ACM.CrossRef Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V., & Smola, A. J. (2013). Distributed large-scale natural graph factorization. In Proceedings of the 22nd International Conference on World Wide Web (pp. 37–48). New York: ACM.CrossRef
11.
go back to reference Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). DeepWalk: Online learning of social representations. In Proceedings 20th International Conference on Knowledge Discovery and Data Mining (pp. 701–710). Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). DeepWalk: Online learning of social representations. In Proceedings 20th International Conference on Knowledge Discovery and Data Mining (pp. 701–710).
12.
go back to reference Cao, S., Lu, W., & Xu, Q. (2015). GraRep: Learning graph representations with global structural information. In KDD15 (pp. 891–900). Cao, S., Lu, W., & Xu, Q. (2015). GraRep: Learning graph representations with global structural information. In KDD15 (pp. 891–900).
13.
go back to reference Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015). Line: Large-scale information network embedding. In Proceedings 24th International Conference on World Wide Web (pp. 1067–1077). Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015). Line: Large-scale information network embedding. In Proceedings 24th International Conference on World Wide Web (pp. 1067–1077).
14.
go back to reference Goyal, P., Hosseinmardi, H., Ferrara, E., & Galstyan, A. (2018). Embedding networks with edge attributes. In Proceedings of the 29th on Hypertext and Social Media (pp. 38–42). New York: ACM.CrossRef Goyal, P., Hosseinmardi, H., Ferrara, E., & Galstyan, A. (2018). Embedding networks with edge attributes. In Proceedings of the 29th on Hypertext and Social Media (pp. 38–42). New York: ACM.CrossRef
15.
go back to reference Zhou, L., Yang, Y., Ren, X., Wu, F., & Zhuang, Y. (2018). Dynamic network embedding by modelling triadic closure process. In Thirty-Second AAAI Conference on Artificial Intelligence. Zhou, L., Yang, Y., Ren, X., Wu, F., & Zhuang, Y. (2018). Dynamic network embedding by modelling triadic closure process. In Thirty-Second AAAI Conference on Artificial Intelligence.
16.
go back to reference Goyal, P., Kamra, N., He, X., & Liu, Y. (2018). DynGEM: Deep embedding method for dynamic graphs. Preprint. arXiv:1805.11273. Goyal, P., Kamra, N., He, X., & Liu, Y. (2018). DynGEM: Deep embedding method for dynamic graphs. Preprint. arXiv:1805.11273.
17.
go back to reference Zhang, Z., Cui, P., Pei, J., Wang, X., & Zhu, W. (2017). TIMERS: Error-bounded SVD restart on dynamic networks. Preprint. arXiv:1711.09541. Zhang, Z., Cui, P., Pei, J., Wang, X., & Zhu, W. (2017). TIMERS: Error-bounded SVD restart on dynamic networks. Preprint. arXiv:1711.09541.
18.
go back to reference Goyal, P., Chhetri, S. R., & Canedo, A. (2019). dyngraph2vec: Capturing network dynamics using dynamic graph representation learning. Preprint. arXiv:1809.02657. Goyal, P., Chhetri, S. R., & Canedo, A. (2019). dyngraph2vec: Capturing network dynamics using dynamic graph representation learning. Preprint. arXiv:1809.02657.
19.
go back to reference Belkin, M., & Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS’01 Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic (Vol. 14, pp. 585–591). Belkin, M., & Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS’01 Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic (Vol. 14, pp. 585–591).
20.
go back to reference Wang, D., Cui, P., & Zhu, W. (2016). Structural deep network embedding. In Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining (pp. 1225–1234). New York: ACM. Wang, D., Cui, P., & Zhu, W. (2016). Structural deep network embedding. In Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining (pp. 1225–1234). New York: ACM.
21.
go back to reference Cao, S., Lu, W., & Xu, Q. (2016). Deep neural networks for learning graph representations. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (pp. 1145–1152). Palo Alto: AAAI Press. Cao, S., Lu, W., & Xu, Q. (2016). Deep neural networks for learning graph representations. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (pp. 1145–1152). Palo Alto: AAAI Press.
22.
go back to reference Kipf, T. N., Welling, M. (2016). Variational graph auto-encoders. Preprint. arXiv:1611.07308. Kipf, T. N., Welling, M. (2016). Variational graph auto-encoders. Preprint. arXiv:1611.07308.
23.
go back to reference Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. Preprint. arXiv:1609.02907. Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. Preprint. arXiv:1609.02907.
24.
go back to reference Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013). Spectral networks and locally connected networks on graphs. Preprint. arXiv:1312.6203. Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013). Spectral networks and locally connected networks on graphs. Preprint. arXiv:1312.6203.
25.
go back to reference Henaff, M., Bruna, J., & LeCun, Y. (2015). Deep convolutional networks on graph-structured data. Preprint. arXiv:1506.05163. Henaff, M., Bruna, J., & LeCun, Y. (2015). Deep convolutional networks on graph-structured data. Preprint. arXiv:1506.05163.
26.
go back to reference Zhu, L., Guo, D., Yin, J., Ver Steeg, G., & Galstyan, A. (2016). Scalable temporal latent space inference for link prediction in dynamic social networks. IEEE Transactions on Knowledge and Data Engineering, 28(10), 2765–2777.CrossRef Zhu, L., Guo, D., Yin, J., Ver Steeg, G., & Galstyan, A. (2016). Scalable temporal latent space inference for link prediction in dynamic social networks. IEEE Transactions on Knowledge and Data Engineering, 28(10), 2765–2777.CrossRef
27.
go back to reference Goyal, P., Kamra, N., He, X., & Liu, Y. (2017). DynGEM: Deep embedding method for dynamic graphs. In IJCAI International Workshop on Representation Learning for Graphs. Goyal, P., Kamra, N., He, X., & Liu, Y. (2017). DynGEM: Deep embedding method for dynamic graphs. In IJCAI International Workshop on Representation Learning for Graphs.
28.
go back to reference Rahman, M., Saha, T. K., Hasan, M. A., Xu, K. S., & Reddy, C. K. (2018). DyLink2Vec: Effective feature representation for link prediction in dynamic networks. Preprint. arXiv:1804.05755. Rahman, M., Saha, T. K., Hasan, M. A., Xu, K. S., & Reddy, C. K. (2018). DyLink2Vec: Effective feature representation for link prediction in dynamic networks. Preprint. arXiv:1804.05755.
29.
go back to reference Sarkar, P., Chakrabarti, D., & Jordan, M. (2012). Nonparametric link prediction in dynamic networks. Preprint. arXiv:1206.6394. Sarkar, P., Chakrabarti, D., & Jordan, M. (2012). Nonparametric link prediction in dynamic networks. Preprint. arXiv:1206.6394.
30.
go back to reference Yang, S., Khot, T., Kersting, K., & Natarajan, S. (2016). Learning continuous-time Bayesian networks in relational domains: A non-parametric approach. In Thirtieth AAAI Conference on Artificial Intelligence. Yang, S., Khot, T., Kersting, K., & Natarajan, S. (2016). Learning continuous-time Bayesian networks in relational domains: A non-parametric approach. In Thirtieth AAAI Conference on Artificial Intelligence.
31.
go back to reference Dunlavy, D. M., Kolda, T. G., & Acar, E. (2011). Temporal link prediction using matrix and tensor factorizations. ACM Transactions on Knowledge Discovery from Data (TKDD), 5(2), 10.CrossRef Dunlavy, D. M., Kolda, T. G., & Acar, E. (2011). Temporal link prediction using matrix and tensor factorizations. ACM Transactions on Knowledge Discovery from Data (TKDD), 5(2), 10.CrossRef
32.
go back to reference Ma, X., Sun, P., & Wang, Y. (2018). Graph regularized nonnegative matrix factorization for temporal link prediction in dynamic networks. Physica A: Statistical Mechanics and Its Applications, 496, 121–136.CrossRef Ma, X., Sun, P., & Wang, Y. (2018). Graph regularized nonnegative matrix factorization for temporal link prediction in dynamic networks. Physica A: Statistical Mechanics and Its Applications, 496, 121–136.CrossRef
33.
go back to reference Talasu, N., Jonnalagadda, A., Pillai, S. S. A., & Rahul, J. (2017). A link prediction based approach for recommendation systems. In 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 2059–2062). Piscataway: IEEE.CrossRef Talasu, N., Jonnalagadda, A., Pillai, S. S. A., & Rahul, J. (2017). A link prediction based approach for recommendation systems. In 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 2059–2062). Piscataway: IEEE.CrossRef
34.
go back to reference Li, J., Cheng, K., Wu, L., & Liu, H. (2018). Streaming link prediction on dynamic attributed networks. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (pp. 369–377). New York: ACM.CrossRef Li, J., Cheng, K., Wu, L., & Liu, H. (2018). Streaming link prediction on dynamic attributed networks. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (pp. 369–377). New York: ACM.CrossRef
35.
go back to reference Wang, Y. J., & Wong, G. Y. (1987). Stochastic blockmodels for directed graphs. Journal of the American Statistical Association, 82(397), 8–19.MathSciNetCrossRef Wang, Y. J., & Wong, G. Y. (1987). Stochastic blockmodels for directed graphs. Journal of the American Statistical Association, 82(397), 8–19.MathSciNetCrossRef
36.
go back to reference Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). In Neurocomputing: Foundations of research. J. A. Anderson & E. Rosenfeld (Eds.) (pp. 696–699). New York: ACM. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). In Neurocomputing: Foundations of research. J. A. Anderson & E. Rosenfeld (Eds.) (pp. 696–699). New York: ACM.
37.
go back to reference Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. Preprint. arXiv:1412.6980. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. Preprint. arXiv:1412.6980.
38.
go back to reference Leskovec, J., Kleinberg, J., & Faloutsos, C. (2005). Graphs over time: Densification laws, shrinking diameters and possible explanations. In Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (pp. 177–187). New York: ACM.CrossRef Leskovec, J., Kleinberg, J., & Faloutsos, C. (2005). Graphs over time: Densification laws, shrinking diameters and possible explanations. In Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (pp. 177–187). New York: ACM.CrossRef
39.
go back to reference Ou, M., Cui, P., Pei, J., Zhang, Z., & Zhu, W. (2016). Asymmetric transitivity preserving graph embedding. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1105–1114). New York: ACM.CrossRef Ou, M., Cui, P., Pei, J., Zhang, Z., & Zhu, W. (2016). Asymmetric transitivity preserving graph embedding. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1105–1114). New York: ACM.CrossRef
40.
go back to reference Brand, M. (2006). Fast low-rank modifications of the thin singular value decomposition. Linear algebra and its applications, 415(1), 20–30.MathSciNetCrossRef Brand, M. (2006). Fast low-rank modifications of the thin singular value decomposition. Linear algebra and its applications, 415(1), 20–30.MathSciNetCrossRef
Metadata
Title
Dynamic Graph Embedding
Authors
Sujit Rokka Chhetri
Mohammad Abdullah Al Faruque
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-37962-9_10