Skip to main content
Top

2024 | OriginalPaper | Chapter

Dynamic Investigation of a Rolling Locomotion System Based on a Tensegrity Structure with Spatially Curved Compressed Members

Authors : Philipp Schorr, Markus Ebnet, Klaus Zimmermann, Valter Böhm

Published in: Perspectives in Dynamical Systems I — Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper a compliant tensegrity structure based on spatially curved compressed members is presented. Due to an internal variation of the prestress state the shape of the structure can be controlled. In particular, a modification of a cylindrical outer shape to a conical form is achieved. Regarding to the applications in mobile robotics this approach enables a steerable two-dimensional rolling locomotion system. Beside the consideration of the underlying non-holonomic constraints a simplified mechanical model an the corresponding equations of motion are derived for a predefined actuation principle. Various numerical simulations are evaluated focusing on the corresponding locomotion behavior. Based on these results a reliable actuation strategy to navigate in two dimensions is proposed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zimmermann, K., Zeidis, I., Behn, C.: Mechanics of terrestrial locomotion: with a focus on non-pedal motion systems. In: Springer Science & Business Media (2009). Zimmermann, K., Zeidis, I., Behn, C.: Mechanics of terrestrial locomotion: with a focus on non-pedal motion systems. In: Springer Science & Business Media (2009).
2.
go back to reference Seeman, M., Broxvall, M., Saffiotti, A., Wide, P.: An autonomous spherical robot for security tasks. In: IEEE International Conference on Computational Intelligence for Homeland Security and Personal Safety, pp. 51–55 (2006). Seeman, M., Broxvall, M., Saffiotti, A., Wide, P.: An autonomous spherical robot for security tasks. In: IEEE International Conference on Computational Intelligence for Homeland Security and Personal Safety, pp. 51–55 (2006).
3.
go back to reference Zhan, Q., Cai, Y., Yan, C.: Design, analysis and experiments of an omni-directional spherical robot. In: IEEE International Conference on Robotics and Automation, pp. 4921–4926 (2011). Zhan, Q., Cai, Y., Yan, C.: Design, analysis and experiments of an omni-directional spherical robot. In: IEEE International Conference on Robotics and Automation, pp. 4921–4926 (2011).
4.
go back to reference Niu, X., Suherlan, A.P., Soh, G.S., Foong, S., Wood, K., Otto, K.: Mechanical development and control of a miniature nonholonomic spherical rolling robot. In: 13th IEEE International Conference on Control Automation Robotics & Vision (2014). Niu, X., Suherlan, A.P., Soh, G.S., Foong, S., Wood, K., Otto, K.: Mechanical development and control of a miniature nonholonomic spherical rolling robot. In: 13th IEEE International Conference on Control Automation Robotics & Vision (2014).
5.
go back to reference Kilin, A. A., Pivovarova, E. N., Ivanova, T. B.: Spherical robot of combined type: Dynamics and control. In: Regular and chaotic dynamics, vol. 20(6), pp. 716–728 (2015).MathSciNet Kilin, A. A., Pivovarova, E. N., Ivanova, T. B.: Spherical robot of combined type: Dynamics and control. In: Regular and chaotic dynamics, vol. 20(6), pp. 716–728 (2015).MathSciNet
6.
go back to reference Karavaev, Y. L., Kilin, A. A.: The dynamics and control of a spherical robot with an internal omniwheel platform. In: Regular and Chaotic Dynamics, vol. 20(2), pp. 134–152 (2015).MathSciNet Karavaev, Y. L., Kilin, A. A.: The dynamics and control of a spherical robot with an internal omniwheel platform. In: Regular and Chaotic Dynamics, vol. 20(2), pp. 134–152 (2015).MathSciNet
7.
go back to reference Shu, G., Zhan, Q., Cai, Y.: Motion control of spherical robot based on conservation of angular momentum. In: IEEE International Conference on Mechatronics and Automation, pp. 599–604 (2009). Shu, G., Zhan, Q., Cai, Y.: Motion control of spherical robot based on conservation of angular momentum. In: IEEE International Conference on Mechatronics and Automation, pp. 599–604 (2009).
8.
go back to reference Ilon, B.E.: Wheels for a course stable selfpropelling vehicle movable in any desired direction on the ground or some other base, U.S. Patent No. 3,876,255 (1973). Ilon, B.E.: Wheels for a course stable selfpropelling vehicle movable in any desired direction on the ground or some other base, U.S. Patent No. 3,876,255 (1973).
9.
go back to reference Gfrerrer, A.: Geometry and kinematics of the Mecanum wheel. In: Computer Aided Geometric Design, vol. 25(9), pp. 784–791 (2008).MathSciNet Gfrerrer, A.: Geometry and kinematics of the Mecanum wheel. In: Computer Aided Geometric Design, vol. 25(9), pp. 784–791 (2008).MathSciNet
10.
go back to reference Zeidis, I., Zimmermann, K.: Dynamics of a four-wheeled mobile robot with Mecanum wheels. In: ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol. 99(12), pp. e201900173 (2019). Zeidis, I., Zimmermann, K.: Dynamics of a four-wheeled mobile robot with Mecanum wheels. In: ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol. 99(12), pp. e201900173 (2019).
11.
go back to reference Andani, M. T., Ramezani, Z.: Robust control of a spherical mobile robot. In: International Research Journal of Engineering and Technology, vol. 4(9), pp. 137–140 (2017). Andani, M. T., Ramezani, Z.: Robust control of a spherical mobile robot. In: International Research Journal of Engineering and Technology, vol. 4(9), pp. 137–140 (2017).
12.
go back to reference Nakashima, A., Maruo, S., Nagai, R., Sakamoto, N.: 2-Dimensional Dynamical Modeling and Control of Spherical Robot Driven by Inner Car. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1846–1851 (2018). Nakashima, A., Maruo, S., Nagai, R., Sakamoto, N.: 2-Dimensional Dynamical Modeling and Control of Spherical Robot Driven by Inner Car. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1846–1851 (2018).
13.
go back to reference Sun, Z., Xie, H., Zheng, J., Man, Z., He, D.: Path-following control of Mecanum-wheels omnidirectional mobile robots using nonsingular terminal sliding mode. In: Mechanical Systems and Signal Processing, vol. 147, pp. 107128 (2021). Sun, Z., Xie, H., Zheng, J., Man, Z., He, D.: Path-following control of Mecanum-wheels omnidirectional mobile robots using nonsingular terminal sliding mode. In: Mechanical Systems and Signal Processing, vol. 147, pp. 107128 (2021).
14.
go back to reference Rieffel, J., Mouret, J. B.: Adaptive and resilient soft tensegrity robots. In: Soft robotics, vol. 5(3), pp. 318–329 (2018). Rieffel, J., Mouret, J. B.: Adaptive and resilient soft tensegrity robots. In: Soft robotics, vol. 5(3), pp. 318–329 (2018).
15.
go back to reference Vespignani, M., Friesen, J. M., SunSpiral, V., Bruce, J.: Design of superball v2, a compliant tensegrity robot for absorbing large impacts. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2865–2871 (2018). Vespignani, M., Friesen, J. M., SunSpiral, V., Bruce, J.: Design of superball v2, a compliant tensegrity robot for absorbing large impacts. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2865–2871 (2018).
16.
go back to reference Bruce, J. E., Vespignani, M.: SUPERball v2: A Tensegrity Rover for Planetary Exploration. In: International Conference of Robotics and Automation (ICRA) (2019). Bruce, J. E., Vespignani, M.: SUPERball v2: A Tensegrity Rover for Planetary Exploration. In: International Conference of Robotics and Automation (ICRA) (2019).
17.
go back to reference Lu, Y., Xu, X., Luo, Y.: Path planning for rolling locomotion of polyhedral tensegrity robots based on Dijkstra algorithm. In: Journal of the International Association for Shell and Spatial Structures, vol. 60(4), pp. 273–286 (2019). Lu, Y., Xu, X., Luo, Y.: Path planning for rolling locomotion of polyhedral tensegrity robots based on Dijkstra algorithm. In: Journal of the International Association for Shell and Spatial Structures, vol. 60(4), pp. 273–286 (2019).
18.
go back to reference Baines, R. L., Booth, J. W., Kramer-Bottiglio, R.: Rolling soft membrane-driven tensegrity robots. In: IEEE Robotics and Automation Letters, vol. 5(4), pp. 6567–6574 (2020). Baines, R. L., Booth, J. W., Kramer-Bottiglio, R.: Rolling soft membrane-driven tensegrity robots. In: IEEE Robotics and Automation Letters, vol. 5(4), pp. 6567–6574 (2020).
19.
go back to reference Kim, K., Agogino, A. K., Agogino, A. M.: Rolling locomotion of cable-driven soft spherical tensegrity robots. In: Soft robotics, vol. 7(3), pp. 346–361 (2020). Kim, K., Agogino, A. K., Agogino, A. M.: Rolling locomotion of cable-driven soft spherical tensegrity robots. In: Soft robotics, vol. 7(3), pp. 346–361 (2020).
20.
go back to reference Kaufhold, T., Schale, F., Böhm, V., Zimmermann, K.: Indoor locomotion experiments of a spherical mobile robot based on a tensegrity structure with curved compressed members. In: IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 523–528 (2017). Kaufhold, T., Schale, F., Böhm, V., Zimmermann, K.: Indoor locomotion experiments of a spherical mobile robot based on a tensegrity structure with curved compressed members. In: IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 523–528 (2017).
21.
go back to reference Schorr, P., Li, E. R. C., Kaufhold, T., Hernández, J. A. R., Zentner, L., Zimmermann, K., Böhm, V.: Kinematic analysis of a rolling tensegrity structure with spatially curved members. In: Meccanica, vol. 56(4), pp. 953–961 (2021).MathSciNet Schorr, P., Li, E. R. C., Kaufhold, T., Hernández, J. A. R., Zentner, L., Zimmermann, K., Böhm, V.: Kinematic analysis of a rolling tensegrity structure with spatially curved members. In: Meccanica, vol. 56(4), pp. 953–961 (2021).MathSciNet
22.
go back to reference Carillo, Li E., Schorr, P., Kaufhold, T., Hernandez Rodriguez, J., Zentner, L., Zimmermann, K., Böhm, V.: Kinematic analysis of the rolling locomotion of mobile robots based on tensegrity structures with spatially curved compressed components. In: Proceedings of the 15th conference on dynamical systems-theory and applications, pp. 335–344 (2019). Carillo, Li E., Schorr, P., Kaufhold, T., Hernandez Rodriguez, J., Zentner, L., Zimmermann, K., Böhm, V.: Kinematic analysis of the rolling locomotion of mobile robots based on tensegrity structures with spatially curved compressed components. In: Proceedings of the 15th conference on dynamical systems-theory and applications, pp. 335–344 (2019).
23.
go back to reference Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. In: Computer methods in applied mechanics and engineering, vol. 1(1), pp. 1-16 (1972).MathSciNet Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. In: Computer methods in applied mechanics and engineering, vol. 1(1), pp. 1-16 (1972).MathSciNet
Metadata
Title
Dynamic Investigation of a Rolling Locomotion System Based on a Tensegrity Structure with Spatially Curved Compressed Members
Authors
Philipp Schorr
Markus Ebnet
Klaus Zimmermann
Valter Böhm
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-56492-5_32

Premium Partners