Skip to main content
Top

2017 | OriginalPaper | Chapter

Dynamic-K Recommendation with Personalized Decision Boundary

Authors : Yan Gao, Jiafeng Guo, Yanyan Lan, Huaming Liao

Published in: Information Retrieval

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we investigate the recommendation task in the most common scenario with implicit feedback (e.g., clicks, purchases). State-of-the-art methods in this direction usually cast the problem as to learn a personalized ranking on a set of items (e.g., webpages, products). The top-N results are then provided to users as recommendations, where the N is usually a fixed number pre-defined by the system according to some heuristic criteria (e.g., page size, screen size). There is one major assumption underlying this fixed-number recommendation scheme, i.e., there are always sufficient relevant items to users’ preferences. Unfortunately, this assumption may not always hold in real-world scenarios. In some applications, there might be very limited candidate items to recommend, and some users may have very high relevance requirement in recommendation. In this way, even the top-1 ranked item may not be relevant to a user’s preference. Therefore, we argue that it is critical to provide a dynamic-K recommendation, where the K should be different with respect to the candidate item set and the target user. We formulate this dynamic-K recommendation task as a joint learning problem with both ranking and classification objectives. The ranking objective is the same as existing methods, i.e., to create a ranking list of items according to users’ interests. The classification objective is unique in this work, which aims to learn a personalized decision boundary to differentiate the relevant items from irrelevant items. Based on these ideas, we extend two state-of-the-art ranking-based recommendation methods, i.e., BPRMF and HRM, to the corresponding dynamic-K versions, namely DK-BPRMF and DK-HRM. Our experimental results on two datasets show that the dynamic-K models are more effective than the original fixed-N recommendation methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)CrossRef Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)CrossRef
2.
go back to reference Aiolli, F.: Convex auc optimization for top-n recommendation with implicit feedback. In: Proceedings of the 8th ACM Conference on Recommender Systems, pp. 293–296. ACM (2014) Aiolli, F.: Convex auc optimization for top-n recommendation with implicit feedback. In: Proceedings of the 8th ACM Conference on Recommender Systems, pp. 293–296. ACM (2014)
3.
go back to reference Feipeng, Z., Yuhong, G.: Improving top-n recommendation with heterogeneous loss. J. Artif. Intell. Res. (2016) Feipeng, Z., Yuhong, G.: Improving top-n recommendation with heterogeneous loss. J. Artif. Intell. Res. (2016)
4.
5.
go back to reference Johnson, C.C.: Logistic matrix factorization for implicit feedback data. In: Advances in Neural Information Processing Systems 27 (2014) Johnson, C.C.: Logistic matrix factorization for implicit feedback data. In: Advances in Neural Information Processing Systems 27 (2014)
6.
go back to reference Karatzoglou, A., Baltrunas, L., Shi, Y.: Learning to rank for recommender systems. In: Proceedings of the 7th ACM Conference on Recommender Systems, pp. 493–494. ACM (2013) Karatzoglou, A., Baltrunas, L., Shi, Y.: Learning to rank for recommender systems. In: Proceedings of the 7th ACM Conference on Recommender Systems, pp. 493–494. ACM (2013)
7.
8.
go back to reference Oard, D.W., Kim, J., et al.: Implicit feedback for recommender systems. In: Proceedings of the AAAI Workshop on Recommender Systems, pp. 81–83 (1998) Oard, D.W., Kim, J., et al.: Implicit feedback for recommender systems. In: Proceedings of the AAAI Workshop on Recommender Systems, pp. 81–83 (1998)
9.
go back to reference Park, D., Neeman, J., Zhang, J., Sanghavi, S., Dhillon, I.S.: Preference completion: Large-scale collaborative ranking from pairwise comparisons. Statistics 1050, 16 (2015) Park, D., Neeman, J., Zhang, J., Sanghavi, S., Dhillon, I.S.: Preference completion: Large-scale collaborative ranking from pairwise comparisons. Statistics 1050, 16 (2015)
10.
go back to reference Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: Bpr: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 452–461. AUAI Press (2009) Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: Bpr: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 452–461. AUAI Press (2009)
11.
go back to reference Ricci, F., Rokach, L., Shapira, B.: Introduction to Recommender Systems Handbook. Springer, Heidelberg (2011) Ricci, F., Rokach, L., Shapira, B.: Introduction to Recommender Systems Handbook. Springer, Heidelberg (2011)
12.
go back to reference Sculley, D.: Combined regression and ranking. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 979–988. ACM (2010) Sculley, D.: Combined regression and ranking. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 979–988. ACM (2010)
13.
go back to reference Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos: Primal estimated sub-gradient solver for svm. In: Proceedings of the 24th International Conference on Machine Learning, pp. 807–814. ACM (2007) Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos: Primal estimated sub-gradient solver for svm. In: Proceedings of the 24th International Conference on Machine Learning, pp. 807–814. ACM (2007)
14.
go back to reference Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Hanjalic, A., Oliver, N.: Tfmap: optimizing map for top-n context-aware recommendation. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 155–164. ACM (2012) Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Hanjalic, A., Oliver, N.: Tfmap: optimizing map for top-n context-aware recommendation. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 155–164. ACM (2012)
15.
go back to reference Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Oliver, N., Hanjalic, A.: Climf: learning to maximize reciprocal rank with collaborative less-is-more filtering. In: Proceedings of the Sixth ACM Conference on Recommender Systems, pp. 139–146. ACM (2012) Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Oliver, N., Hanjalic, A.: Climf: learning to maximize reciprocal rank with collaborative less-is-more filtering. In: Proceedings of the Sixth ACM Conference on Recommender Systems, pp. 139–146. ACM (2012)
16.
go back to reference Wang, P., Guo, J., Lan, Y., Xu, J., Wan, S., Cheng, X.: Learning hierarchical representation model for next basket recommendation. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 403–412. ACM (2015) Wang, P., Guo, J., Lan, Y., Xu, J., Wan, S., Cheng, X.: Learning hierarchical representation model for next basket recommendation. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 403–412. ACM (2015)
17.
go back to reference Weimer, M., Karatzoglou, A., Le, Q.V., Smola, A.: Maximum margin matrix factorization for collaborative ranking. In: Advances in Neural Information Processing Systems, pp. 1–8 (2007) Weimer, M., Karatzoglou, A., Le, Q.V., Smola, A.: Maximum margin matrix factorization for collaborative ranking. In: Advances in Neural Information Processing Systems, pp. 1–8 (2007)
18.
go back to reference Yun, H., Raman, P., Vishwanathan, S.: Ranking via robust binary classification. In: Advances in Neural Information Processing Systems, pp. 2582–2590 (2014) Yun, H., Raman, P., Vishwanathan, S.: Ranking via robust binary classification. In: Advances in Neural Information Processing Systems, pp. 2582–2590 (2014)
Metadata
Title
Dynamic-K Recommendation with Personalized Decision Boundary
Authors
Yan Gao
Jiafeng Guo
Yanyan Lan
Huaming Liao
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-68699-8_2