Skip to main content
Top
Published in:

06-11-2021

Dynamic multi-robot task allocation under uncertainty and temporal constraints

Authors: Shushman Choudhury, Jayesh K. Gupta, Mykel J. Kochenderfer, Dorsa Sadigh, Jeannette Bohg

Published in: Autonomous Robots | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We consider the problem of dynamically allocating tasks to multiple agents under time window constraints and task completion uncertainty. Our objective is to minimize the number of unsuccessful tasks at the end of the operation horizon. We present a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under uncertainty and multi-agent coordination, and addresses them in a hierarchical manner. The lower layer computes policies for individual agents using dynamic programming with tree search, and the upper layer resolves conflicts in individual plans to obtain a valid multi-agent allocation. Our algorithm, Stochastic Conflict-Based Allocation (SCoBA), is optimal in expectation and complete under some reasonable assumptions. In practice, SCoBA is computationally efficient enough to interleave planning and execution online. On the metric of successful task completion, SCoBA consistently outperforms a number of baseline methods and shows strong competitive performance against an oracle with complete lookahead. It also scales well with the number of tasks and agents. We validate our results over a wide range of simulations on two distinct domains: multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
Literature
go back to reference Ahmed, S., & Garcia, R. (2003). Dynamic capacity acquisition and assignment under uncertainty. Annals of Operations Research, 124(1–4), 267–283.MathSciNetCrossRef Ahmed, S., & Garcia, R. (2003). Dynamic capacity acquisition and assignment under uncertainty. Annals of Operations Research, 124(1–4), 267–283.MathSciNetCrossRef
go back to reference Al-Hinai, N., & ElMekkawy, T. Y. (2011). Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm. International Journal of Production Economics, 132(2), 279–291.CrossRef Al-Hinai, N., & ElMekkawy, T. Y. (2011). Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm. International Journal of Production Economics, 132(2), 279–291.CrossRef
go back to reference Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., & Rus, D. (2017). On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment. Proceedings of the National Academy of Sciences, 114(3), 462–467.CrossRef Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., & Rus, D. (2017). On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment. Proceedings of the National Academy of Sciences, 114(3), 462–467.CrossRef
go back to reference Barer, M., Sharon, G., Stern, R., & Felner, A. (2014). Suboptimal variants of the conflict-based search algorithm for the multi-agent pathfinding problem. In European conference on artificial intelligence (ECAI), pp. 961–962. Barer, M., Sharon, G., Stern, R., & Felner, A. (2014). Suboptimal variants of the conflict-based search algorithm for the multi-agent pathfinding problem. In European conference on artificial intelligence (ECAI), pp. 961–962.
go back to reference Behrens, J. K., Lange, R., & Mansouri, M. (2019). A constraint programming approach to simultaneous task allocation and motion scheduling for industrial dual-arm manipulation tasks. In IEEE international conference on robotics and automation (ICRA), IEEE, pp. 8705–8711. Behrens, J. K., Lange, R., & Mansouri, M. (2019). A constraint programming approach to simultaneous task allocation and motion scheduling for industrial dual-arm manipulation tasks. In IEEE international conference on robotics and automation (ICRA), IEEE, pp. 8705–8711.
go back to reference Bertsekas, D. P. (2005). Dynamic programming and optimal control. Athena Scientific.MATH Bertsekas, D. P. (2005). Dynamic programming and optimal control. Athena Scientific.MATH
go back to reference Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to numerical computing. SIAM Review, 59(1), 65–98.MathSciNetCrossRef Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to numerical computing. SIAM Review, 59(1), 65–98.MathSciNetCrossRef
go back to reference Boutilier, C. (1996). Planning, learning and coordination in multiagent decision processes. In Conference on theoretical aspects of rationality and knowledge, Morgan Kaufmann Publishers Inc., pp. 195–210. Boutilier, C. (1996). Planning, learning and coordination in multiagent decision processes. In Conference on theoretical aspects of rationality and knowledge, Morgan Kaufmann Publishers Inc., pp. 195–210.
go back to reference Boyarski, E., Felner, A., Stern, R., Sharon, G., Tolpin, D., Betzalel, O., & Shimony, S. E. (2015). ICBS: Improved conflict-based search algorithm for multi-agent pathfinding. In International joint conference on artificial intelligence (IJCAI), pp. 740–746. Boyarski, E., Felner, A., Stern, R., Sharon, G., Tolpin, D., Betzalel, O., & Shimony, S. E. (2015). ICBS: Improved conflict-based search algorithm for multi-agent pathfinding. In International joint conference on artificial intelligence (IJCAI), pp. 740–746.
go back to reference Burkard, R. E., Dell’Amico, M., & Martello, S. (2009). Assignment problems, SIAM. Burkard, R. E., Dell’Amico, M., & Martello, S. (2009). Assignment problems, SIAM.
go back to reference Campbell, T., Johnson, L., & How, J. P. (2013). Multiagent allocation of Markov decision process tasks. In American control conference (ACC), IEEE, pp. 2356–2361. Campbell, T., Johnson, L., & How, J. P. (2013). Multiagent allocation of Markov decision process tasks. In American control conference (ACC), IEEE, pp. 2356–2361.
go back to reference Chaari, T., Chaabane, S., Aissani, N., & Trentesaux, D. (2014). Scheduling under uncertainty: Survey and research directions. In International conference on advanced logistics and transport, ICALT, pp. 229–234. Chaari, T., Chaabane, S., Aissani, N., & Trentesaux, D. (2014). Scheduling under uncertainty: Survey and research directions. In International conference on advanced logistics and transport, ICALT, pp. 229–234.
go back to reference Che, A., Kats, V., & Levner, E. (2017). An efficient bicriteria algorithm for stable robotic flow shop scheduling. European Journal of Operational Research, 260(3), 964–971.MathSciNetCrossRef Che, A., Kats, V., & Levner, E. (2017). An efficient bicriteria algorithm for stable robotic flow shop scheduling. European Journal of Operational Research, 260(3), 964–971.MathSciNetCrossRef
go back to reference Cheung, R. K., Hang, D. D., & Shi, N. (2005). A labeling method for dynamic driver-task assignment with uncertain task durations. Operations Research Letters, 33(4), 411–420.MathSciNetCrossRef Cheung, R. K., Hang, D. D., & Shi, N. (2005). A labeling method for dynamic driver-task assignment with uncertain task durations. Operations Research Letters, 33(4), 411–420.MathSciNetCrossRef
go back to reference Choudhury, S., Gupta, J. K., Kochenderfer, M. J., Sadigh, D., & Bohg, J. (2020a). Dynamic multi-robot task allocation under uncertainty and temporal constraints. Robotics: Science and Systems Foundation. Choudhury, S., Gupta, J. K., Kochenderfer, M. J., Sadigh, D., & Bohg, J. (2020a). Dynamic multi-robot task allocation under uncertainty and temporal constraints. Robotics: Science and Systems Foundation.
go back to reference Choudhury, S., Solovey, K., Kochenderfer, M. J., & Pavone, M. (2020b). Efficient large-scale multi-drone delivery using transit networks. In IEEE international conference on robotics and automation (ICRA). Choudhury, S., Solovey, K., Kochenderfer, M. J., & Pavone, M. (2020b). Efficient large-scale multi-drone delivery using transit networks. In IEEE international conference on robotics and automation (ICRA).
go back to reference Church, L. K., & Uzsoy, R. (1992). Analysis of periodic and event-driven rescheduling policies in dynamic shops. International Journal of Computer Integrated Manufacturing, 5(3), 153–163.CrossRef Church, L. K., & Uzsoy, R. (1992). Analysis of periodic and event-driven rescheduling policies in dynamic shops. International Journal of Computer Integrated Manufacturing, 5(3), 153–163.CrossRef
go back to reference Coltin, B., & Veloso, M. M. (2014). Online pickup and delivery planning with transfers for mobile robots. In IEEE international conference on robotics and automation (ICRA), IEEE, pp. 5786–5791. Coltin, B., & Veloso, M. M. (2014). Online pickup and delivery planning with transfers for mobile robots. In IEEE international conference on robotics and automation (ICRA), IEEE, pp. 5786–5791.
go back to reference Cordeau, J., & Laporte, G. (2007). The dial-a-ride problem: Models and algorithms. Annals of Operations Research, 153(1), 29–46.MathSciNetCrossRef Cordeau, J., & Laporte, G. (2007). The dial-a-ride problem: Models and algorithms. Annals of Operations Research, 153(1), 29–46.MathSciNetCrossRef
go back to reference Dertouzos, M. L., & Mok, A. K. (1989). Multiprocessor online scheduling of hard-real-time tasks. IEEE Transactions on Software Engineering, 15(12), 1497–1506.CrossRef Dertouzos, M. L., & Mok, A. K. (1989). Multiprocessor online scheduling of hard-real-time tasks. IEEE Transactions on Software Engineering, 15(12), 1497–1506.CrossRef
go back to reference Egorov, M., Sunberg, Z. N., Balaban, E., Wheeler, T. A., Gupta, J. K., & Kochenderfer, M. J. (2017). POMDPs.jl: A framework for sequential decision making under uncertainty. Journal of Machine Learning Research (JMLR), 18(26), 1–5.MathSciNet Egorov, M., Sunberg, Z. N., Balaban, E., Wheeler, T. A., Gupta, J. K., & Kochenderfer, M. J. (2017). POMDPs.jl: A framework for sequential decision making under uncertainty. Journal of Machine Learning Research (JMLR), 18(26), 1–5.MathSciNet
go back to reference Felner, A., Stern, R., Shimony, S. E., Boyarski, E., Goldenberg, M., Sharon, G., Sturtevant, N., Wagner, G., & Surynek, P. (2017). Search-based optimal solvers for the multi-agent pathfinding problem: Summary and challenges. In Symposium on combinatorial search. Felner, A., Stern, R., Shimony, S. E., Boyarski, E., Goldenberg, M., Sharon, G., Sturtevant, N., Wagner, G., & Surynek, P. (2017). Search-based optimal solvers for the multi-agent pathfinding problem: Summary and challenges. In Symposium on combinatorial search.
go back to reference Framinan, J. M., Fernandez-Viagas, V., & Perez-Gonzalez, P. (2019). Using real-time information to reschedule jobs in a flowshop with variable processing times. Computers & Industrial Engineering, 129, 113–125.CrossRef Framinan, J. M., Fernandez-Viagas, V., & Perez-Gonzalez, P. (2019). Using real-time information to reschedule jobs in a flowshop with variable processing times. Computers & Industrial Engineering, 129, 113–125.CrossRef
go back to reference Garey, M. R., & Johnson, D. S. (1975). Complexity results for multiprocessor scheduling under resource constraints. SIAM Journal on Computing, 4(4), 397–411.MathSciNetCrossRef Garey, M. R., & Johnson, D. S. (1975). Complexity results for multiprocessor scheduling under resource constraints. SIAM Journal on Computing, 4(4), 397–411.MathSciNetCrossRef
go back to reference Gerkey, B. P., & Mataric, M. J. (2004). A formal analysis and taxonomy of task allocation in multi-robot systems. International Journal of Robotics Research, 23(9), 939–954.CrossRef Gerkey, B. P., & Mataric, M. J. (2004). A formal analysis and taxonomy of task allocation in multi-robot systems. International Journal of Robotics Research, 23(9), 939–954.CrossRef
go back to reference Gini, M. L. (2017). Multi-robot allocation of tasks with temporal and ordering constraints. In AAAI conference on artificial intelligence (AAAI), pp. 4863–4869. Gini, M. L. (2017). Multi-robot allocation of tasks with temporal and ordering constraints. In AAAI conference on artificial intelligence (AAAI), pp. 4863–4869.
go back to reference Gombolay, M. C., Wilcox, R., & Shah, J. A. (2018). Fast scheduling of robot teams performing tasks with temporospatial constraints. IEEE Transactions on Robotics (TRO), 34(1), 220–239.CrossRef Gombolay, M. C., Wilcox, R., & Shah, J. A. (2018). Fast scheduling of robot teams performing tasks with temporospatial constraints. IEEE Transactions on Robotics (TRO), 34(1), 220–239.CrossRef
go back to reference González-Neira, E., Montoya-Torres, J., & Barrera, D. (2017). Flow-shop scheduling problem under uncertainties: Review and trends. International Journal of Industrial Engineering Computations, 8(4), 399–426.CrossRef González-Neira, E., Montoya-Torres, J., & Barrera, D. (2017). Flow-shop scheduling problem under uncertainties: Review and trends. International Journal of Industrial Engineering Computations, 8(4), 399–426.CrossRef
go back to reference Hönig, W., Kiesel, S., Tinka, A., Durham, J., & Ayanian, N. (2018). Conflict-based search with optimal task assignment. In International conference on autonomous agents and multiagent systems (AAMAS). Hönig, W., Kiesel, S., Tinka, A., Durham, J., & Ayanian, N. (2018). Conflict-based search with optimal task assignment. In International conference on autonomous agents and multiagent systems (AAMAS).
go back to reference Hyland, M., & Mahmassani, H. S. (2018). Dynamic autonomous vehicle fleet operations: Optimization-based strategies to assign AVs to immediate traveler demand requests. Transportation Research Part C: Emerging Technologies, 92, 278–297.CrossRef Hyland, M., & Mahmassani, H. S. (2018). Dynamic autonomous vehicle fleet operations: Optimization-based strategies to assign AVs to immediate traveler demand requests. Transportation Research Part C: Emerging Technologies, 92, 278–297.CrossRef
go back to reference Johannsmeier, L., & Haddadin, S. (2016). A hierarchical human–robot interaction-planning framework for task allocation in collaborative industrial assembly processes. IEEE Robotics and Automation Letters, 2(1), 41–48.CrossRef Johannsmeier, L., & Haddadin, S. (2016). A hierarchical human–robot interaction-planning framework for task allocation in collaborative industrial assembly processes. IEEE Robotics and Automation Letters, 2(1), 41–48.CrossRef
go back to reference Kartal, B., Nunes, E., Godoy, J., & Gini, M. L. (2016). Monte Carlo tree search for multi-robot task allocation. In AAAI conference on artificial intelligence (AAAI), pp. 4222–4223. Kartal, B., Nunes, E., Godoy, J., & Gini, M. L. (2016). Monte Carlo tree search for multi-robot task allocation. In AAAI conference on artificial intelligence (AAAI), pp. 4222–4223.
go back to reference Kochenderfer, M. J. (2015). Decision making under uncertainty: Theory and application. MIT Press.CrossRef Kochenderfer, M. J. (2015). Decision making under uncertainty: Theory and application. MIT Press.CrossRef
go back to reference Kok, J. R., Spaan, M. T., & Vlassis, N. (2003). Multi-robot decision making using coordination graphs. International Conference on Advanced Robotics (ICAR), 3, 1124–1129. Kok, J. R., Spaan, M. T., & Vlassis, N. (2003). Multi-robot decision making using coordination graphs. International Conference on Advanced Robotics (ICAR), 3, 1124–1129.
go back to reference Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A., Tuyls, K., Pérolat, J., Silver, D., & Graepel, T. (2017). A unified game-theoretic approach to multiagent reinforcement learning. In Advances in neural information processing systems, pp. 4190–4203. Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A., Tuyls, K., Pérolat, J., Silver, D., & Graepel, T. (2017). A unified game-theoretic approach to multiagent reinforcement learning. In Advances in neural information processing systems, pp. 4190–4203.
go back to reference Lau, H. C., Sim, M., & Teo, K. M. (2003a). Vehicle routing problem with time windows and a limited number of vehicles. European Journal of Operational Research, 148(3), 559–569.MathSciNetCrossRef Lau, H. C., Sim, M., & Teo, K. M. (2003a). Vehicle routing problem with time windows and a limited number of vehicles. European Journal of Operational Research, 148(3), 559–569.MathSciNetCrossRef
go back to reference Lau, H. C., Sim, M., & Teo, K. M. (2003b). Vehicle routing problem with time windows and a limited number of vehicles. European Journal of Operational Research, 148(3), 559–569.MathSciNetCrossRef Lau, H. C., Sim, M., & Teo, K. M. (2003b). Vehicle routing problem with time windows and a limited number of vehicles. European Journal of Operational Research, 148(3), 559–569.MathSciNetCrossRef
go back to reference Laumond, J. P., et al. (1998). Robot motion planning and control (Vol. 229). Springer.CrossRef Laumond, J. P., et al. (1998). Robot motion planning and control (Vol. 229). Springer.CrossRef
go back to reference Lenstra, J. K., Kan, A. R., & Brucker, P. (1977). Complexity of machine scheduling problems. In Annals of discrete mathematics, Vol. 1, Elsevier, pp. 343–362. Lenstra, J. K., Kan, A. R., & Brucker, P. (1977). Complexity of machine scheduling problems. In Annals of discrete mathematics, Vol. 1, Elsevier, pp. 343–362.
go back to reference Lerman, K., Jones, C. V., Galstyan, A., & Mataric, M. J. (2006). Analysis of dynamic task allocation in multi-robot systems. International Journal of Robotics Researh (IJRR), 25(3), 225–241.CrossRef Lerman, K., Jones, C. V., Galstyan, A., & Mataric, M. J. (2006). Analysis of dynamic task allocation in multi-robot systems. International Journal of Robotics Researh (IJRR), 25(3), 225–241.CrossRef
go back to reference Lin, X., Janak, S. L., & Floudas, C. A. (2004). A new robust optimization approach for scheduling under uncertainty: I—Bounded uncertainty. Computers & Chemical Engineering, 28(6–7), 1069–1085.CrossRef Lin, X., Janak, S. L., & Floudas, C. A. (2004). A new robust optimization approach for scheduling under uncertainty: I—Bounded uncertainty. Computers & Chemical Engineering, 28(6–7), 1069–1085.CrossRef
go back to reference Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning. In Machine learning, Elsevier, pp. 157–163. Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning. In Machine learning, Elsevier, pp. 157–163.
go back to reference Liu, L., & Shell, D. A. (2011). Assessing optimal assignment under uncertainty: An interval-based algorithm. The International Journal of Robotics Research, 30(7), 936–953.CrossRef Liu, L., & Shell, D. A. (2011). Assessing optimal assignment under uncertainty: An interval-based algorithm. The International Journal of Robotics Research, 30(7), 936–953.CrossRef
go back to reference Mataric, M. J., Sukhatme, G. S., & Østergaard, E. H. (2003). Multi-robot task allocation in uncertain environments. Autonomous Robots, 14(2–3), 255–263.CrossRef Mataric, M. J., Sukhatme, G. S., & Østergaard, E. H. (2003). Multi-robot task allocation in uncertain environments. Autonomous Robots, 14(2–3), 255–263.CrossRef
go back to reference Munkres, J. (1957). Algorithms for the assignment and transportation problems. Journal of the Society for Industrial and Applied Mathematics, 5(1), 32–38.MathSciNetCrossRef Munkres, J. (1957). Algorithms for the assignment and transportation problems. Journal of the Society for Industrial and Applied Mathematics, 5(1), 32–38.MathSciNetCrossRef
go back to reference Nunes, E., Manner, M. D., Mitiche, H., & Gini, M. L. (2017). A taxonomy for task allocation problems with temporal and ordering constraints. Robotics and Autonomous Systems, 90, 55–70.CrossRef Nunes, E., Manner, M. D., Mitiche, H., & Gini, M. L. (2017). A taxonomy for task allocation problems with temporal and ordering constraints. Robotics and Autonomous Systems, 90, 55–70.CrossRef
go back to reference O’onovan, R., Uzsoy, R., & McKay, K. N. (1999). Predictable scheduling of a single machine with breakdowns and sensitive jobs. International Journal of Production Research, 37(18), 4217–4233.CrossRef O’onovan, R., Uzsoy, R., & McKay, K. N. (1999). Predictable scheduling of a single machine with breakdowns and sensitive jobs. International Journal of Production Research, 37(18), 4217–4233.CrossRef
go back to reference Péret, L., & Garcia, F. (2013). Online resolution techniques. In Markov decision processes in artificial intelligence, pp. 153–184. Péret, L., & Garcia, F. (2013). Online resolution techniques. In Markov decision processes in artificial intelligence, pp. 153–184.
go back to reference Rahmani, D., & Heydari, M. (2014). Robust and stable flow shop scheduling with unexpected arrivals of new jobs and uncertain processing times. Journal of Manufacturing Systems, 33(1), 84–92.CrossRef Rahmani, D., & Heydari, M. (2014). Robust and stable flow shop scheduling with unexpected arrivals of new jobs and uncertain processing times. Journal of Manufacturing Systems, 33(1), 84–92.CrossRef
go back to reference Raman, V., Donzé, A., Sadigh, D., Murray, R. M., & Seshia, S. A. (2015). Reactive synthesis from signal temporal logic specifications. In International conference on hybrid systems: Computation and control, pp. 239–248. Raman, V., Donzé, A., Sadigh, D., Murray, R. M., & Seshia, S. A. (2015). Reactive synthesis from signal temporal logic specifications. In International conference on hybrid systems: Computation and control, pp. 239–248.
go back to reference Sharon, G., Stern, R., Felner, A., & Sturtevant, N. (2012). Conflict-based search for optimal multi-agent path finding. In AAAI conference on artificial intelligence (AAAI). Sharon, G., Stern, R., Felner, A., & Sturtevant, N. (2012). Conflict-based search for optimal multi-agent path finding. In AAAI conference on artificial intelligence (AAAI).
go back to reference Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.MATH Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.MATH
go back to reference Szelke, E., & Kerr, R. M. (1994). Knowledge-based reactive scheduling. Production Planning & Control, 5(2), 124–145.CrossRef Szelke, E., & Kerr, R. M. (1994). Knowledge-based reactive scheduling. Production Planning & Control, 5(2), 124–145.CrossRef
go back to reference Timotheou, S. (2010). Asset-task assignment algorithms in the presence of execution uncertainty. The Computer Journal, 54(9), 1514–1525.CrossRef Timotheou, S. (2010). Asset-task assignment algorithms in the presence of execution uncertainty. The Computer Journal, 54(9), 1514–1525.CrossRef
go back to reference Timotheou, S. (2011). Network flow approaches for an asset-task assignment problem with execution uncertainty. In Computer and information sciences, Springer, pp. 33–38. Timotheou, S. (2011). Network flow approaches for an asset-task assignment problem with execution uncertainty. In Computer and information sciences, Springer, pp. 33–38.
go back to reference Vodopivec, T., Samothrakis, S., & Ster, B. (2017). On Monte Carlo tree search and reinforcement learning. Journal of Artificial Intelligence Research, 60, 881–936.MathSciNetCrossRef Vodopivec, T., Samothrakis, S., & Ster, B. (2017). On Monte Carlo tree search and reinforcement learning. Journal of Artificial Intelligence Research, 60, 881–936.MathSciNetCrossRef
go back to reference Wang, Z., & Gombolay, M. (2020). Learning scheduling policies for multi-robot coordination with graph attention networks. IEEE Robotics and Automation Letters, 5(3), 4509–4516.CrossRef Wang, Z., & Gombolay, M. (2020). Learning scheduling policies for multi-robot coordination with graph attention networks. IEEE Robotics and Automation Letters, 5(3), 4509–4516.CrossRef
go back to reference Yan, Z., Jouandeau, N., & Chérif, A. A. (2012). Multi-robot heuristic goods transportation. In IEEE international conference on intelligent systems, pp. 409–414. Yan, Z., Jouandeau, N., & Chérif, A. A. (2012). Multi-robot heuristic goods transportation. In IEEE international conference on intelligent systems, pp. 409–414.
go back to reference Zhang, C., Song, W., Cao, Z., Zhang, J., Tan, P. S., & Chi, X. (2020). Learning to dispatch for job shop scheduling via deep reinforcement learning. In Advances in neural information processing systems (NIPS), Vol. 33. Zhang, C., Song, W., Cao, Z., Zhang, J., Tan, P. S., & Chi, X. (2020). Learning to dispatch for job shop scheduling via deep reinforcement learning. In Advances in neural information processing systems (NIPS), Vol. 33.
Metadata
Title
Dynamic multi-robot task allocation under uncertainty and temporal constraints
Authors
Shushman Choudhury
Jayesh K. Gupta
Mykel J. Kochenderfer
Dorsa Sadigh
Jeannette Bohg
Publication date
06-11-2021
Publisher
Springer US
Published in
Autonomous Robots / Issue 1/2022
Print ISSN: 0929-5593
Electronic ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-021-10022-9