Skip to main content
Top
Published in: Journal of Electronic Materials 10/2021

10-07-2021 | Original Research Article

Dynamic Optical Study of Flexible Multiwall Carbon Nanotube Paper Using Terahertz Spectroscopy

Authors: Subhash Nimanpure, Animesh Pandey, Guruvandra Singh, Satish Teotia, Sabyasachi Banerjee, Sudhir Husale, Bhanu Pratap Singh, Dibakar Roychowdhury, Manoj Kumar, Rina Sharma, Mukesh Jewariya

Published in: Journal of Electronic Materials | Issue 10/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The photon energy of terahertz waves is of the order of a few milli-electronvolts and is much lower than the thermal energy of ~ 26 meV at room temperature. However, the fast and sensitive detection of terahertz waves is notoriously difficult at ambient conditions. Moreover, the material flexibility is also very important within existing terahertz technologies for development of wearable and portable terahertz devices. We experimentally demonstrate that multiwall carbon nanotube flexible paper (MWCNT-FP) is one of the potential candidates to be used for terahertz detectors at room temperature. For the first time, MWCNT-FP sample is measured over a wide frequency band ranging from 0.02 to 4.5 THz at room temperature as compared to previously reported materials that demonstrate prominent frequency response between 0.2 and 2.5 THz. The MWCNT-FP sample delivered wide band absorption between 0.02 and 4.0 THz. Over the transmission, a high absorption peak is detected at 1.0 THz. The optical density spectrum is observed around 1.25 and 3.37 THz in the low-frequency regime and high-frequency regime, respectively. The present results suggest the potential application of MWCNT-FP as a wearable THz detector.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference J.P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Hönninger, P. Desbarats, and P. Mounaix, J. Infrared Millim. Terahertz Waves 35, 382 (2014).CrossRef J.P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Hönninger, P. Desbarats, and P. Mounaix, J. Infrared Millim. Terahertz Waves 35, 382 (2014).CrossRef
4.
go back to reference K. Kawase, T. Shibuya, S.I. Hayashi, and K. Suizu, C. R. Phys. 11, 510 (2010).CrossRef K. Kawase, T. Shibuya, S.I. Hayashi, and K. Suizu, C. R. Phys. 11, 510 (2010).CrossRef
7.
go back to reference M.C. Kemp, P.Taday, B. Cole, J. Cluff, A. Fitzgerald, and W. Tribe, in SPIE Proceedings Aerosense (2003), p. 5070. M.C. Kemp, P.Taday, B. Cole, J. Cluff, A. Fitzgerald, and W. Tribe, in SPIE Proceedings Aerosense (2003), p. 5070.
9.
go back to reference H. Cheon, J.H. Paik, M. Choi, H.-J. Yang, and J.-H. Son, Sci. Rep. 9, 6413 (2019).CrossRef H. Cheon, J.H. Paik, M. Choi, H.-J. Yang, and J.-H. Son, Sci. Rep. 9, 6413 (2019).CrossRef
10.
go back to reference S. Keren-Zur, M. Tal, S. Fleischer, D.M. Mittleman, and T. Ellenbogen, Nat. Commun. 10, 1778 (2019).CrossRef S. Keren-Zur, M. Tal, S. Fleischer, D.M. Mittleman, and T. Ellenbogen, Nat. Commun. 10, 1778 (2019).CrossRef
11.
go back to reference K. Leng, W. Fu, Y. Liu, M. Chhowalla, and K.P. Loh, Nat. Rev. Mater. 5, 482 (2020).CrossRef K. Leng, W. Fu, Y. Liu, M. Chhowalla, and K.P. Loh, Nat. Rev. Mater. 5, 482 (2020).CrossRef
12.
go back to reference C. Ciesla, D. Arnone, A. Corchia, D. Crawley, C. Longbottom, E. Linfield, and M. Pepper, Biomedical Applications of Terahertz Pulse Imaging (Bellingham: SPIE, 2000).CrossRef C. Ciesla, D. Arnone, A. Corchia, D. Crawley, C. Longbottom, E. Linfield, and M. Pepper, Biomedical Applications of Terahertz Pulse Imaging (Bellingham: SPIE, 2000).CrossRef
13.
go back to reference T. Otsuji, IEEE Trans. Terahertz Sci. Technol. 5, 1110 (2015). T. Otsuji, IEEE Trans. Terahertz Sci. Technol. 5, 1110 (2015).
14.
go back to reference F. Simoens, Physics and Applications of Terahertz Radiation. ed. M. Perenzoni and D.J. Paul (Berlin: Springer, 2014), p. 35.CrossRef F. Simoens, Physics and Applications of Terahertz Radiation. ed. M. Perenzoni and D.J. Paul (Berlin: Springer, 2014), p. 35.CrossRef
15.
go back to reference E. Hack, L. Valzania, G. Gäumann, M. Shalaby, C.P. Hauri, and P. Zolliker, Sensors 16, 11 (2016).CrossRef E. Hack, L. Valzania, G. Gäumann, M. Shalaby, C.P. Hauri, and P. Zolliker, Sensors 16, 11 (2016).CrossRef
16.
go back to reference A.K. Sood, G.G. Pethuraja, R.E. Welser, N.K. Dhar, and P.S. Wijewarnasuriya, Nanostructure Technology for EO/IR Detector Applications, Nanorods and Nanocomposites (London: Intech Open, 2019). A.K. Sood, G.G. Pethuraja, R.E. Welser, N.K. Dhar, and P.S. Wijewarnasuriya, Nanostructure Technology for EO/IR Detector Applications, Nanorods and Nanocomposites (London: Intech Open, 2019).
18.
go back to reference M. Tarasov, J. Svensson, J. Weis, L. Kuzmin, and E. Campbell, JETP Lett. 84, 267 (2006).CrossRef M. Tarasov, J. Svensson, J. Weis, L. Kuzmin, and E. Campbell, JETP Lett. 84, 267 (2006).CrossRef
19.
20.
21.
22.
go back to reference F. Leonard, The Physics of Carbon Nanotube Devices (Amsterdam: Elsevier, 2008). F. Leonard, The Physics of Carbon Nanotube Devices (Amsterdam: Elsevier, 2008).
23.
go back to reference S. Nanot, E.H. Hároz, J.-H. Kim, R.H. Hauge, and J. Kono, Adv. Mater. 24, 4977 (2012).CrossRef S. Nanot, E.H. Hároz, J.-H. Kim, R.H. Hauge, and J. Kono, Adv. Mater. 24, 4977 (2012).CrossRef
24.
go back to reference D. Spirito, D. Coquillat, S.L.D. Bonis, A. Lombardo, M. Bruna, A.C. Ferrari, V. Pellegrini, A. Tredicucci, W. Knap, and M.S. Vitiello, Appl. Phys. Lett. 104, 061111 (2014).CrossRef D. Spirito, D. Coquillat, S.L.D. Bonis, A. Lombardo, M. Bruna, A.C. Ferrari, V. Pellegrini, A. Tredicucci, W. Knap, and M.S. Vitiello, Appl. Phys. Lett. 104, 061111 (2014).CrossRef
25.
go back to reference S.L. Chen, Y.-C. Chang, C. Zhang, J.G. Ok, T. Ling, M.T. Mihnev, T.B. Norris, and L.J. Guo, Nat. Photonics 8, 537 (2014).CrossRef S.L. Chen, Y.-C. Chang, C. Zhang, J.G. Ok, T. Ling, M.T. Mihnev, T.B. Norris, and L.J. Guo, Nat. Photonics 8, 537 (2014).CrossRef
26.
go back to reference F.R.G. Bagsican, M. Wais, N. Komatsu, W. Gao, L.W. Weber, K. Serita, H. Murakami, K. Held, F.A. Hegmann, M. Tonouchi, J. Kono, I. Kawayama, and M. Battiato, Nano Lett. 20, 3098 (2020).CrossRef F.R.G. Bagsican, M. Wais, N. Komatsu, W. Gao, L.W. Weber, K. Serita, H. Murakami, K. Held, F.A. Hegmann, M. Tonouchi, J. Kono, I. Kawayama, and M. Battiato, Nano Lett. 20, 3098 (2020).CrossRef
27.
go back to reference M. Portnoi, O. Kibis, and M.R. da Costa, in Proceedings of SPIE 6328, Nanomodeling II (2006), p. 632805. M. Portnoi, O. Kibis, and M.R. da Costa, in Proceedings of SPIE 6328, Nanomodeling II (2006), p. 632805.
28.
go back to reference R.R. Hartmann, J. Kono, and M.E. Portnoi, Nanotechnology 25, 322001 (2014).CrossRef R.R. Hartmann, J. Kono, and M.E. Portnoi, Nanotechnology 25, 322001 (2014).CrossRef
29.
go back to reference L. Ren, Q. Zhang, S. Nanot, I. Kawayama, M. Tonouchi, and J. Kono, J. Infrared Millim. Terahertz Waves 33, 846 (2012).CrossRef L. Ren, Q. Zhang, S. Nanot, I. Kawayama, M. Tonouchi, and J. Kono, J. Infrared Millim. Terahertz Waves 33, 846 (2012).CrossRef
30.
go back to reference O. Hellman, I.A. Abrikosov, and S.I. Simak, Phys. Rev. B 84, 180301 (2011).CrossRef O. Hellman, I.A. Abrikosov, and S.I. Simak, Phys. Rev. B 84, 180301 (2011).CrossRef
31.
go back to reference L. Ren, Q. Zhang, C.L. Pint, A.K. Wójcik, M. Bunney, T. Arikawa, I. Kawayama, M. Tonouchi, R.H. Hauge, A.A. Belyanin, and J. Kono, Phys. Rev. B 87, 161401 (2013).CrossRef L. Ren, Q. Zhang, C.L. Pint, A.K. Wójcik, M. Bunney, T. Arikawa, I. Kawayama, M. Tonouchi, R.H. Hauge, A.A. Belyanin, and J. Kono, Phys. Rev. B 87, 161401 (2013).CrossRef
32.
go back to reference Z. Wu, L. Wang, Y. Peng, A. Young, S. Seraphin, and H. Xin, J. Appl. Phys. 103, 094324 (2008).CrossRef Z. Wu, L. Wang, Y. Peng, A. Young, S. Seraphin, and H. Xin, J. Appl. Phys. 103, 094324 (2008).CrossRef
33.
go back to reference E.P.J. Parrott, J.A. Zeitler, J. McGregor, S.-P. Oei, H.E. Unalan, W.I. Milne, J.-P. Tessonnier, D.S. Su, R. Schlögl, and L.F. Gladden, Adv. Mater. 21, 3953 (2009).CrossRef E.P.J. Parrott, J.A. Zeitler, J. McGregor, S.-P. Oei, H.E. Unalan, W.I. Milne, J.-P. Tessonnier, D.S. Su, R. Schlögl, and L.F. Gladden, Adv. Mater. 21, 3953 (2009).CrossRef
34.
go back to reference H.P. Maheshwari, I. Elizabeth, B.P. Singh, C. Gupta, R.B. Mathur, and G. Sukumaran, in United States Patent, N. D. ed. CSIR-National Physical Laboratory, India (Council of Scientific and Industrial Research, 2018), p. 09. H.P. Maheshwari, I. Elizabeth, B.P. Singh, C. Gupta, R.B. Mathur, and G. Sukumaran, in United States Patent, N. D. ed. CSIR-National Physical Laboratory, India (Council of Scientific and Industrial Research, 2018), p. 09.
35.
go back to reference A. Chaudhary, R. Kumar, S. Teotia, S.K. Dhawan, S.R. Dhakate, and S. Kumari, J. Mater. Chem. C 5, 322 (2017).CrossRef A. Chaudhary, R. Kumar, S. Teotia, S.K. Dhawan, S.R. Dhakate, and S. Kumari, J. Mater. Chem. C 5, 322 (2017).CrossRef
36.
go back to reference S. Sharma, B.P. Singh, A.S. Babal, S. Teotia, J. Jyoti, and S.R. Dhakate, J. Mater. Sci. 52, 7503 (2017).CrossRef S. Sharma, B.P. Singh, A.S. Babal, S. Teotia, J. Jyoti, and S.R. Dhakate, J. Mater. Sci. 52, 7503 (2017).CrossRef
37.
go back to reference B.P. Singh, S. Teotia, A. Chaudhary, I. Elizabeth, A. Srivastava, S. Kumari, S.R. Dhakate, S. Gopukumar, and R.B. Mathur, Adv. Mater. Lett. 8, 1038 (2017). B.P. Singh, S. Teotia, A. Chaudhary, I. Elizabeth, A. Srivastava, S. Kumari, S.R. Dhakate, S. Gopukumar, and R.B. Mathur, Adv. Mater. Lett. 8, 1038 (2017).
38.
go back to reference B. Bhattacharyya, A. Sharma, M. Kaur, B.P. Singh, and S. Husale, J. Alloys Compd. 851, 156759 (2021).CrossRef B. Bhattacharyya, A. Sharma, M. Kaur, B.P. Singh, and S. Husale, J. Alloys Compd. 851, 156759 (2021).CrossRef
39.
go back to reference A. Bayer, M. Pozimski, S. Schambeck, D. Schuh, R. Huber, D. Bougeard, and C. Lange, Nano Lett. 17, 6340 (2017).CrossRef A. Bayer, M. Pozimski, S. Schambeck, D. Schuh, R. Huber, D. Bougeard, and C. Lange, Nano Lett. 17, 6340 (2017).CrossRef
40.
41.
Metadata
Title
Dynamic Optical Study of Flexible Multiwall Carbon Nanotube Paper Using Terahertz Spectroscopy
Authors
Subhash Nimanpure
Animesh Pandey
Guruvandra Singh
Satish Teotia
Sabyasachi Banerjee
Sudhir Husale
Bhanu Pratap Singh
Dibakar Roychowdhury
Manoj Kumar
Rina Sharma
Mukesh Jewariya
Publication date
10-07-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 10/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-09077-2

Other articles of this Issue 10/2021

Journal of Electronic Materials 10/2021 Go to the issue