Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 2/2022

01-02-2022 | ELECTRICAL AND MAGNETIC PROPERTIES

Dynamic Permeability of Composite Media with Nonspherical Ferromagnetic Particles

Authors: D. V. Perov, A. B. Rinkevich

Published in: Physics of Metals and Metallography | Issue 2/2022

Login to get access
share
SHARE

Abstract

A method for calculating the microwave permeability of a magnetized composite with ellipsoidal particles is proposed. The ellipsoid axes are oriented differently relative to the coordinate axes. The dependences of the components of the permeability tensor and effective permeability on the magnetic field and frequency is determined. The field dependence of the effective permeability for composites consisting of particles with a shape close to a sphere, as well as flakes and needles, is calculated.
Literature
1.
go back to reference A. Sihvola, Electromagnetic Mixing Formulas and Applications (The Institution of Electrical Engineers, London, 1999). A. Sihvola, Electromagnetic Mixing Formulas and Applications (The Institution of Electrical Engineers, London, 1999).
2.
go back to reference A. N. Lagarkov and K. N. Rozanov, “High-frequency behavior of magnetic composites,” J. Met., Mater. Miner. 321, 2082–2092 (2009). A. N. Lagarkov and K. N. Rozanov, “High-frequency behavior of magnetic composites,” J. Met., Mater. Miner. 321, 2082–2092 (2009).
3.
go back to reference S. N. Starostenko, K. N. Rozanov, and A. N. Lagar’kov, “Electrical and magnetic properties of the binary heterogeneous mixture model,” Phys. Met. Metallogr. 122, No. 4, 323–344 (2021). CrossRef S. N. Starostenko, K. N. Rozanov, and A. N. Lagar’kov, “Electrical and magnetic properties of the binary heterogeneous mixture model,” Phys. Met. Metallogr. 122, No. 4, 323–344 (2021). CrossRef
4.
go back to reference C. Brosseau and P. Talbot, “Effective magnetic permeability of Ni and Co micro- and nanoparticles embedded in a ZnO matrix,” J. Appl. Phys. 97, No. 10, 104325 (2005). CrossRef C. Brosseau and P. Talbot, “Effective magnetic permeability of Ni and Co micro- and nanoparticles embedded in a ZnO matrix,” J. Appl. Phys. 97, No. 10, 104325 (2005). CrossRef
5.
go back to reference M. Lan, J. Cai, D. Zhang, L. Yuan, and Y. Xu, “Electromagnetic shielding effectiveness and mechanical property of polymer–matrix composites containing metallized conductive porous flake-shaped diatomite,” Composites, Part B 67, 132–137 (2014). CrossRef M. Lan, J. Cai, D. Zhang, L. Yuan, and Y. Xu, “Electromagnetic shielding effectiveness and mechanical property of polymer–matrix composites containing metallized conductive porous flake-shaped diatomite,” Composites, Part B 67, 132–137 (2014). CrossRef
6.
go back to reference R. B. Yang and W. F. Liang, “Microwave absorbing characteristics of flake-shaped FeNiMo/epoxy composites,” J. Appl. Phys. 113, 17A315 (2013). R. B. Yang and W. F. Liang, “Microwave absorbing characteristics of flake-shaped FeNiMo/epoxy composites,” J. Appl. Phys. 113, 17A315 (2013).
7.
go back to reference A. G. Gurevich, Magnetic Resonance in Ferrites and Antiferromagnetics (Nauka, Moscow, 1973). A. G. Gurevich, Magnetic Resonance in Ferrites and Antiferromagnetics (Nauka, Moscow, 1973).
8.
go back to reference E. A. Stepanova, S. O. Volchkov, V. A. Lukshina, D. A. Shishkin, D. M. Khudyakova, A. Larrañaga, and G. V. Kurlyandskaya, “Structure, magnetic properties and magnetic impedance of fast quenched ribbons of alloys based on finemet in the initial state and after heat treatment,” Phys. Met. Metallogr. 121, No. 10, 961–967 (2020). CrossRef E. A. Stepanova, S. O. Volchkov, V. A. Lukshina, D. A. Shishkin, D. M. Khudyakova, A. Larrañaga, and G. V. Kurlyandskaya, “Structure, magnetic properties and magnetic impedance of fast quenched ribbons of alloys based on finemet in the initial state and after heat treatment,” Phys. Met. Metallogr. 121, No. 10, 961–967 (2020). CrossRef
9.
go back to reference A. B. Rinkevich, Yu. I. Ryabkov, D. V. Perov, Ya. A. Pakhomov, and E. A. Kuznetsov, “Transmission of microwaves through the composite material with Fe–Si–Nb–Cu–B alloy particles,” Phys. Met. Metallogr. 122, No. 4, 351–357 (2021). CrossRef A. B. Rinkevich, Yu. I. Ryabkov, D. V. Perov, Ya. A. Pakhomov, and E. A. Kuznetsov, “Transmission of microwaves through the composite material with Fe–Si–Nb–Cu–B alloy particles,” Phys. Met. Metallogr. 122, No. 4, 351–357 (2021). CrossRef
10.
go back to reference R. Ramprasad, P. Zurcher, M. Petras, and M. Miller, “Magnetic properties of metallic ferromagnetic nanoparticle composites,” J. Appl. Phys. 96, 519–529 (2004). CrossRef R. Ramprasad, P. Zurcher, M. Petras, and M. Miller, “Magnetic properties of metallic ferromagnetic nanoparticle composites,” J. Appl. Phys. 96, 519–529 (2004). CrossRef
11.
go back to reference A. B. Rinkevich, A. V. Korolev, M. I. Samoylovich, S. M. Klescheva, and D. V. Perov, “Magnetic properties of nanocomposites based on opal matrices with embedded ferrite-spinel nanoparticles,” J. Met., Mater. Miner. 399, 216–220 (2016). A. B. Rinkevich, A. V. Korolev, M. I. Samoylovich, S. M. Klescheva, and D. V. Perov, “Magnetic properties of nanocomposites based on opal matrices with embedded ferrite-spinel nanoparticles,” J. Met., Mater. Miner. 399, 216–220 (2016).
12.
go back to reference R. Skomski, G. C. Hadjipanayis, and D. J. Sellmyer, “Effective demagnetizing factors of complicated particle mixtures,” IEEE Trans. Magn. 43, No. 6, 2956–2958 (2007). CrossRef R. Skomski, G. C. Hadjipanayis, and D. J. Sellmyer, “Effective demagnetizing factors of complicated particle mixtures,” IEEE Trans. Magn. 43, No. 6, 2956–2958 (2007). CrossRef
13.
go back to reference A. Chevalier, J. -L. Mattei, and M. Le Floc’h, “Ferromagnetic resonance of isotropic heterogeneous magnetic materials: theory and experiments,” J. Met., Mater. Miner. 215– 216, 66–68 (2000). A. Chevalier, J. -L. Mattei, and M. Le Floc’h, “Ferromagnetic resonance of isotropic heterogeneous magnetic materials: theory and experiments,” J. Met., Mater. Miner. 215216, 66–68 (2000).
14.
go back to reference A. B. Rinkevich and D. V. Perov, “Determination of the effective magnetic permeability of nanocomposite media,” Dokl. Ros. Akad. Nauk. Fiz., Tekhn. Nauki 499, 22–24 (2021). A. B. Rinkevich and D. V. Perov, “Determination of the effective magnetic permeability of nanocomposite media,” Dokl. Ros. Akad. Nauk. Fiz., Tekhn. Nauki 499, 22–24 (2021).
15.
go back to reference A. G. Gurevich and G. A. Melkov, Magnetic Oscillations and Waves (Nauka, Moscow, 1994). A. G. Gurevich and G. A. Melkov, Magnetic Oscillations and Waves (Nauka, Moscow, 1994).
16.
go back to reference J.-L. Mattei and M. Le Floc’h, “A numerical approach of the inner demagnetizing effects in soft magnetic composites,” J. Met., Mater. Miner. 215– 216, 589–591 (2000). J.-L. Mattei and M. Le Floc’h, “A numerical approach of the inner demagnetizing effects in soft magnetic composites,” J. Met., Mater. Miner. 215216, 589–591 (2000).
Metadata
Title
Dynamic Permeability of Composite Media with Nonspherical Ferromagnetic Particles
Authors
D. V. Perov
A. B. Rinkevich
Publication date
01-02-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 2/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22020090