Skip to main content
Top

2022 | OriginalPaper | Chapter

3. Dynamic Response of Pedestrian Thermal Comfort

Authors : Kevin Ka-Lun Lau, Zheng Tan, Tobi Eniolu Morakinyo, Chao Ren

Published in: Outdoor Thermal Comfort in Urban Environment

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Outdoor thermal comfort studies have proved that urban design has a great influence on pedestrians’ thermal comfort and that its assessment helps one to understand the quality and usage of the pedestrian environment. However, the majority of outdoor thermal comfort studies perceive pedestrian thermal comfort as “static”. The dynamic multiple uses of urban spaces and the highly inhomogeneous urban morphology in high-density cities of the tropics are seldom considered, which leads to a lack of understanding about how pedestrians respond to the changes of the outdoor environment. This study contributes to the understanding of the dynamic thermal comfort using a longitudinal survey that was conducted to obtain information about how thermal sensation changes throughout the walking route and how it is affected by micrometeorological conditions and the urban geometry. The large variations in micrometeorological conditions throughout the walking routes are predominantly influenced by the urban geometry. Additionally, the spatial pattern of thermal sensation varies based on the weather conditions, emphasising the need to account for such variations in the assessment of pedestrian thermal comfort. The results also show that thermal sensation was associated with participants’ short-term thermal experience (2–3 min) and that the urban geometry plays an important role in the time-lag effect of meteorological variables on thermal sensation. The findings of this study contribute to improving urban geometry design in order to mitigate the thermal discomfort and create a better pedestrian environment in high-density cities.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Arens, E., H. Zhang, and C. Huizenga. 2006. Partial-and whole-body thermal sensation and comfort—Part I: Uniform environmental conditions. Journal of Thermal Biology 31 (1): 53–59.CrossRef Arens, E., H. Zhang, and C. Huizenga. 2006. Partial-and whole-body thermal sensation and comfort—Part I: Uniform environmental conditions. Journal of Thermal Biology 31 (1): 53–59.CrossRef
go back to reference Castillo-Manzano, J.I., L. Lopez-Valpuesta, and J.P. Asencio-Flores. 2014. Extending pedestrianization processes outside the old city center: Conflict and benefits in the case of the city of Seville. Habitat International 44: 194–201.CrossRef Castillo-Manzano, J.I., L. Lopez-Valpuesta, and J.P. Asencio-Flores. 2014. Extending pedestrianization processes outside the old city center: Conflict and benefits in the case of the city of Seville. Habitat International 44: 194–201.CrossRef
go back to reference Chen, C.P., R.L. Hwang, S.Y. Chang, and Y.T. Lu. 2011. Effect of temperature steps on human shin physiology and thermal sensation response. Building and Environment 46: 2387–2397.CrossRef Chen, C.P., R.L. Hwang, S.Y. Chang, and Y.T. Lu. 2011. Effect of temperature steps on human shin physiology and thermal sensation response. Building and Environment 46: 2387–2397.CrossRef
go back to reference de Dear, R. 2011. Revisiting an old hypothesis of human thermal perception: Alliesthesia. Building Research and Information 39 (2): 108–117.CrossRef de Dear, R. 2011. Revisiting an old hypothesis of human thermal perception: Alliesthesia. Building Research and Information 39 (2): 108–117.CrossRef
go back to reference de Dear, R.J., J.W. Ring, and P.O. Fanger. 1993. Thermal sensations resulting from sudden ambient temperature changes. Indoor Air 3: 181–192.CrossRef de Dear, R.J., J.W. Ring, and P.O. Fanger. 1993. Thermal sensations resulting from sudden ambient temperature changes. Indoor Air 3: 181–192.CrossRef
go back to reference Fanger, P.O. 1973. Assessment of man’s thermal comfort in practice. British Journal of Industrial Medicine 30 (4): 313–324. Fanger, P.O. 1973. Assessment of man’s thermal comfort in practice. British Journal of Industrial Medicine 30 (4): 313–324.
go back to reference Gagge, A.P., J.A.J. Stolwijk, and J.D. Hardy. 1967. Comfort and thermal sensations and associated physiological responses at various ambient temperatures. Environmental Research 1: 1–20.CrossRef Gagge, A.P., J.A.J. Stolwijk, and J.D. Hardy. 1967. Comfort and thermal sensations and associated physiological responses at various ambient temperatures. Environmental Research 1: 1–20.CrossRef
go back to reference Höppe, P. 1999. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology 43 (2): 71–75.CrossRef Höppe, P. 1999. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology 43 (2): 71–75.CrossRef
go back to reference Höppe, P. 2002. Different aspects of assessing indoor and outdoor thermal comfort. Energy and Buildings 34 (6): 661–665.CrossRef Höppe, P. 2002. Different aspects of assessing indoor and outdoor thermal comfort. Energy and Buildings 34 (6): 661–665.CrossRef
go back to reference Humphreys, M.A. 1977. The optimum diameter for a globe thermometer for use indoors. Building Research Establishment Current Paper 78 (9): 1–5. Humphreys, M.A. 1977. The optimum diameter for a globe thermometer for use indoors. Building Research Establishment Current Paper 78 (9): 1–5.
go back to reference Ji, W., B. Cao, M. Luo, and Y. Zhu. 2017. Influence of short-term thermal experience on thermal comfort evaluations: A climate chamber experiment. Building and Environment 114: 246–256.CrossRef Ji, W., B. Cao, M. Luo, and Y. Zhu. 2017. Influence of short-term thermal experience on thermal comfort evaluations: A climate chamber experiment. Building and Environment 114: 246–256.CrossRef
go back to reference Katavoutas, G., H.A. Flocas, and A. Matzarakis. 2015. Dynamic modeling of human thermal comfort after the transition from an indoor to an outdoor hot environment. International Journal of Biometeorology 59 (2): 205–216.CrossRef Katavoutas, G., H.A. Flocas, and A. Matzarakis. 2015. Dynamic modeling of human thermal comfort after the transition from an indoor to an outdoor hot environment. International Journal of Biometeorology 59 (2): 205–216.CrossRef
go back to reference Krüger, E.L., F.O. Minella, and F. Rasia. 2011. Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil. Building and Environment 46: 621–634.CrossRef Krüger, E.L., F.O. Minella, and F. Rasia. 2011. Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil. Building and Environment 46: 621–634.CrossRef
go back to reference Maruani, T., and I. Amit-Cohen. 2007. Open space planning models: A review of approaches and methods. Landscape and Urban Planning 81: 1–13.CrossRef Maruani, T., and I. Amit-Cohen. 2007. Open space planning models: A review of approaches and methods. Landscape and Urban Planning 81: 1–13.CrossRef
go back to reference Matzarakis, A., and F. Rutz. 2010. Application of the RayMan Model in Urban Environments. Freiburg: Meteorological Institute, University of Freiburg. Matzarakis, A., and F. Rutz. 2010. Application of the RayMan Model in Urban Environments. Freiburg: Meteorological Institute, University of Freiburg.
go back to reference Nagano, K., A. Takaki, M. Hirakawa, and Y. Tochihara. 2005. Effects of ambient temperature steps on thermal comfort requirements. International Journal of Biometeorology 50: 33–39.CrossRef Nagano, K., A. Takaki, M. Hirakawa, and Y. Tochihara. 2005. Effects of ambient temperature steps on thermal comfort requirements. International Journal of Biometeorology 50: 33–39.CrossRef
go back to reference Nakayoshi, M., M. Kanda, R. Shi, and R. de Dear. 2015. Outdoor thermal physiology along human pathways: A study using a wearable measurement system. International Journal of Biometeorology 59: 503–515.CrossRef Nakayoshi, M., M. Kanda, R. Shi, and R. de Dear. 2015. Outdoor thermal physiology along human pathways: A study using a wearable measurement system. International Journal of Biometeorology 59: 503–515.CrossRef
go back to reference Nikolopoulou, M., and K. Steemers. 2003. Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy and Buildings 35 (1): 95–101.CrossRef Nikolopoulou, M., and K. Steemers. 2003. Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy and Buildings 35 (1): 95–101.CrossRef
go back to reference Nikolopoulou, M., N. Baker, and K. Steemers. 1999. Improvements to the globe thermometer for outdoor use. Architectural Science Review 42: 27–34.CrossRef Nikolopoulou, M., N. Baker, and K. Steemers. 1999. Improvements to the globe thermometer for outdoor use. Architectural Science Review 42: 27–34.CrossRef
go back to reference Nikolopoulou, M., N. Baker, and K. Steemers. 2001. Thermal comfort in outdoor urban spaces: Understanding the human parameter. Solar Energy 70 (3): 227–235.CrossRef Nikolopoulou, M., N. Baker, and K. Steemers. 2001. Thermal comfort in outdoor urban spaces: Understanding the human parameter. Solar Energy 70 (3): 227–235.CrossRef
go back to reference Pantavou, K., G. Theoharatos, M. Santamouris, and D. Asimakopoulos. 2013. Outdoor thermal sensation of pedestrians in a Mediterranean climate and a comparison with UTCI. Building and Environment 66: 82–95.CrossRef Pantavou, K., G. Theoharatos, M. Santamouris, and D. Asimakopoulos. 2013. Outdoor thermal sensation of pedestrians in a Mediterranean climate and a comparison with UTCI. Building and Environment 66: 82–95.CrossRef
go back to reference Parkinson, T., and R. de Dear. 2015. Thermal pleasure in built environments: Physiology of alliesthesia. Building Research and Information 43 (3): 288–301.CrossRef Parkinson, T., and R. de Dear. 2015. Thermal pleasure in built environments: Physiology of alliesthesia. Building Research and Information 43 (3): 288–301.CrossRef
go back to reference Potvin, A. 2000. Assessing the microclimate of urban transitional spaces. In Proceedings of PLEA2000 (Passive Low Energy Architecture), Cambridge, UK, July 2000. Potvin, A. 2000. Assessing the microclimate of urban transitional spaces. In Proceedings of PLEA2000 (Passive Low Energy Architecture), Cambridge, UK, July 2000.
go back to reference Spagnolo, J., and R. de Dear. 2003. A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Building and Environment 38: 721–738.CrossRef Spagnolo, J., and R. de Dear. 2003. A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Building and Environment 38: 721–738.CrossRef
go back to reference Taleghani, M., L. Kleerekoper, M. Tenpierik, and A. Dobbelsteen. 2015. Outdoor thermal comfort within five different urban forms in the Netherlands. Building and Environment 83: 65–78.CrossRef Taleghani, M., L. Kleerekoper, M. Tenpierik, and A. Dobbelsteen. 2015. Outdoor thermal comfort within five different urban forms in the Netherlands. Building and Environment 83: 65–78.CrossRef
go back to reference Thorsson, S., F. Lindberg, I. Eliasson, and B. Holmer. 2007. Different methods for estimating the mean radiant temperature in an outdoor urban setting. International Journal of Climatology 27: 1983–1993.CrossRef Thorsson, S., F. Lindberg, I. Eliasson, and B. Holmer. 2007. Different methods for estimating the mean radiant temperature in an outdoor urban setting. International Journal of Climatology 27: 1983–1993.CrossRef
go back to reference Vasilikou, C., and M. Nikolopoulou. 2013. Thermal walks: Identifying pedestrian thermal comfort variations in the urban continuum of historic city centres. In PLEA2013—29th Conference, Sustainable Architecture for a Renewable Future, Munich, Germany 10–12 Sept 2013. Vasilikou, C., and M. Nikolopoulou. 2013. Thermal walks: Identifying pedestrian thermal comfort variations in the urban continuum of historic city centres. In PLEA2013—29th Conference, Sustainable Architecture for a Renewable Future, Munich, Germany 10–12 Sept 2013.
go back to reference Xiong, J., Z. Lian, X. Zhou, J. You, and Y. Lin. 2015. Effects of temperature steps on human health and thermal comfort. Building and Environment 94: 144–154.CrossRef Xiong, J., Z. Lian, X. Zhou, J. You, and Y. Lin. 2015. Effects of temperature steps on human health and thermal comfort. Building and Environment 94: 144–154.CrossRef
go back to reference Yu, Z.J., B. Yang, and N. Zhu. 2015. Effect of thermal transient on human thermal comfort in temporarily occupied space in winter—A case study in Tianjin. Building and Environment 93: 27–33. Yu, Z.J., B. Yang, and N. Zhu. 2015. Effect of thermal transient on human thermal comfort in temporarily occupied space in winter—A case study in Tianjin. Building and Environment 93: 27–33.
go back to reference Yuan, C., and E. Ng. 2012. Building porosity for better urban ventilation in high-density cities—A computational parametric study. Building and Environment 50: 176–189.CrossRef Yuan, C., and E. Ng. 2012. Building porosity for better urban ventilation in high-density cities—A computational parametric study. Building and Environment 50: 176–189.CrossRef
Metadata
Title
Dynamic Response of Pedestrian Thermal Comfort
Authors
Kevin Ka-Lun Lau
Zheng Tan
Tobi Eniolu Morakinyo
Chao Ren
Copyright Year
2022
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-5245-5_3