Skip to main content
Top

30-07-2024 | Research

Dynamic Smartcard Protection and SSELUR-GRU-Based Attack Stage Identification in Industrial IoT

Authors: S. K. Mouleeswaran, K. Ramesh, K. Manikandan, VivekYoganand Anbalagan

Published in: Journal of Electronic Testing

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, the Industrial Internet of Things (IoT) has grown significantly. Automation along with intelligence introduces a slew of cyber risks while implementing industrial digitalization. But, none of the prevailing work focused on provoking alerts to future attacks and protecting the dynamic smart card from malicious attacks.Therefore, a Smooth Scaled Exponential Linear Unit and Reinforcement Learning-based Gated Recurrent Unit (SSELUR-GRU)-based stage identification and dynamic smart card protection are proposed in this paper.Primarily, the data pre-processing is done, and the preprocessed data are balanced using the ADASYN technique. Then, the data is clustered using the CD-KM algorithm for the feasible training of the data. After that, the clustered data is normalized and the patterns of normalized data are analyzed. Further, the important features are chosen by employing the proposed LWSO algorithm for minimizing the processing time of the classifier. Both the obtained optimal features and the patterns are data trained using Log Mish-based Pyramid Net (LM-PN), for classifying the attacked and non-attacked data. In contrast, the input data features and the attacked data are trained by using the proposed SSELUR-GRU for identifying the attack stages.Thus, based on the attack stage, the dynamic card is protected by updating its number, or else the admin is alerted.The experimental outcome stated that when analogized to prevailing methodologies, the proposed method withstands a maximum accuracy of 98.71% and a higher identification rate of 98.21%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
21.
go back to reference Aleesa AM, Younis M, Mohammed AA, Sahar NM (2021) Deep-intrusion detection system with enhanced UNSW-NB15 dataset based on deep learning techniques. J Eng Sci Technol 16(1):711–727 Aleesa AM, Younis M, Mohammed AA, Sahar NM (2021) Deep-intrusion detection system with enhanced UNSW-NB15 dataset based on deep learning techniques. J Eng Sci Technol 16(1):711–727
24.
go back to reference Liu B, Chen J, Yong Hu (2022) Mode division-based anomaly detection against integrity and availability attacks in industrial cyber-physical systems. Comput Ind 137:103609CrossRef Liu B, Chen J, Yong Hu (2022) Mode division-based anomaly detection against integrity and availability attacks in industrial cyber-physical systems. Comput Ind 137:103609CrossRef
Metadata
Title
Dynamic Smartcard Protection and SSELUR-GRU-Based Attack Stage Identification in Industrial IoT
Authors
S. K. Mouleeswaran
K. Ramesh
K. Manikandan
VivekYoganand Anbalagan
Publication date
30-07-2024
Publisher
Springer US
Published in
Journal of Electronic Testing
Print ISSN: 0923-8174
Electronic ISSN: 1573-0727
DOI
https://doi.org/10.1007/s10836-024-06129-3