Skip to main content
Top
Published in: International Journal of Mechanics and Materials in Design 2/2020

10-10-2019

Dynamic stiffness approach to vibration transmission within a beam structure carrying spring–mass systems

Authors: Hui Li, Xue Wen Yin, Wen Wei Wu

Published in: International Journal of Mechanics and Materials in Design | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The dynamic stiffness method is developed for the dynamics of a beam structure carrying multiple spring−mass systems. Based on classical Bernoulli–Euler beam theory, three types of vibrations, namely, bending, longitudinal and torsional motions, are formulated in terms of dynamic stiffness matrix. Similar to finite element technique, the local dynamic stiffness matrices for individual beams and spring−mass systems are assembled into global dynamic stiffness matrices so as to address vibration transmission from machines to flexible beamlike foundations. Using our proposed method, the vibration transmission within a beam frame, carrying multiple spring−mass systems is addressed. Through numerical analysis, the calculated vibration responses agree well with those from finite element method, which demonstrates that dynamic stiffness formulation has great potential in modeling the dynamics of built-up beam structures that supports machinery, especially in characterizing vibration isolation due to wave reflections, wave conversions, and other underlying mechanisms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Aksencer, T., Aydogdu, M.: Vibrations of a rotating composite beam with an attached point mass. Compos. Struct. 190, 1–9 (2018)CrossRef Aksencer, T., Aydogdu, M.: Vibrations of a rotating composite beam with an attached point mass. Compos. Struct. 190, 1–9 (2018)CrossRef
go back to reference Bao, G., Xu, R.: Dynamic stiffness matrix of partial-interaction composite beams. Adv. Mech. Eng. 7(3), 1687814015575990 (2015)CrossRef Bao, G., Xu, R.: Dynamic stiffness matrix of partial-interaction composite beams. Adv. Mech. Eng. 7(3), 1687814015575990 (2015)CrossRef
go back to reference Banerjee, J.R.: Free vibration of axially loaded composite Timoshenko beams using the dynamic stiffness matrix method. Comput. Struct. 69, 197–208 (1998)MATHCrossRef Banerjee, J.R.: Free vibration of axially loaded composite Timoshenko beams using the dynamic stiffness matrix method. Comput. Struct. 69, 197–208 (1998)MATHCrossRef
go back to reference Banerjee, J.R.: Dynamic stiffness matrix development and free vibration analysis of a moving beam. J. Sound Vib. 303, 135–143 (2007)CrossRef Banerjee, J.R.: Dynamic stiffness matrix development and free vibration analysis of a moving beam. J. Sound Vib. 303, 135–143 (2007)CrossRef
go back to reference Bathe, K.J., Wilson, E.: Numerical Method in Finite Element Analysis. Prentice-Hall, Upper Saddle River (1976)MATH Bathe, K.J., Wilson, E.: Numerical Method in Finite Element Analysis. Prentice-Hall, Upper Saddle River (1976)MATH
go back to reference Bondaryk, J.: Vibration of truss structures. Journal of Acoustical Society of America 102, 2167–2175 (1997)CrossRef Bondaryk, J.: Vibration of truss structures. Journal of Acoustical Society of America 102, 2167–2175 (1997)CrossRef
go back to reference Chang, C.H.: Free vibration of a simply supported beam carrying a rigid mass at the middle. J. Sound Vib. 237(4), 733–744 (2000)CrossRef Chang, C.H.: Free vibration of a simply supported beam carrying a rigid mass at the middle. J. Sound Vib. 237(4), 733–744 (2000)CrossRef
go back to reference Chen, D.W., Wu, J.S.: The exact solutions for the natural frequencies and mode shapes of non-uniform beams with multiple spring−mass systems. J. Sound Vib. 255(2), 299–322 (2002)CrossRef Chen, D.W., Wu, J.S.: The exact solutions for the natural frequencies and mode shapes of non-uniform beams with multiple spring−mass systems. J. Sound Vib. 255(2), 299–322 (2002)CrossRef
go back to reference Hajhosseini, M., et al.: Vibration band gap analysis of a new periodic beam model using GQDR method. Mech. Res. Commun. 79, 43–50 (2017)CrossRef Hajhosseini, M., et al.: Vibration band gap analysis of a new periodic beam model using GQDR method. Mech. Res. Commun. 79, 43–50 (2017)CrossRef
go back to reference Karami, G., et al.: A DQEM for vibration of shear deformable nonuniform beams with general boundary conditions. Eng. Struct. 25, 1169–1178 (2003)CrossRef Karami, G., et al.: A DQEM for vibration of shear deformable nonuniform beams with general boundary conditions. Eng. Struct. 25, 1169–1178 (2003)CrossRef
go back to reference Kaya, M.O., Ozgumus, O.O.: Flexural–torsional-coupled vibration analysis of axially loaded closed-section composite Timoshenko beam by using DTM. J. Sound Vib. 306(3–5), 95–506 (2007) Kaya, M.O., Ozgumus, O.O.: Flexural–torsional-coupled vibration analysis of axially loaded closed-section composite Timoshenko beam by using DTM. J. Sound Vib. 306(3–5), 95–506 (2007)
go back to reference Lee, J.W., Lee, J.Y.: Free vibration analysis using the transfer-matrix method on a tapered beam. Comput. Struct. 164, 75–82 (2016)CrossRef Lee, J.W., Lee, J.Y.: Free vibration analysis using the transfer-matrix method on a tapered beam. Comput. Struct. 164, 75–82 (2016)CrossRef
go back to reference Lin, H.-P., Chang, S.C.: Free vibration analysis of multi-span beams with intermediate flexible constraints. J. Sound Vib. 281, 155–169 (2005)CrossRef Lin, H.-P., Chang, S.C.: Free vibration analysis of multi-span beams with intermediate flexible constraints. J. Sound Vib. 281, 155–169 (2005)CrossRef
go back to reference Li, H., et al.: Dynamic stiffness formulation for in-plane and bending vibrations of plates with two opposite edges simply supported. J. Vib. Control 24(9), 1652–1669 (2018)MathSciNetMATHCrossRef Li, H., et al.: Dynamic stiffness formulation for in-plane and bending vibrations of plates with two opposite edges simply supported. J. Vib. Control 24(9), 1652–1669 (2018)MathSciNetMATHCrossRef
go back to reference Li and Hua: Dynamic stiffness analysis of laminated composite beams using trigonometric shear deformation theory. Compos. Struct. 89, 433–442 (2009)CrossRef Li and Hua: Dynamic stiffness analysis of laminated composite beams using trigonometric shear deformation theory. Compos. Struct. 89, 433–442 (2009)CrossRef
go back to reference Li and Hua: The effects of shear deformation on the free vibration of elastic beams with general boundary conditions. J. Mechanical Engineering Science 224, 71–84 (2010)CrossRef Li and Hua: The effects of shear deformation on the free vibration of elastic beams with general boundary conditions. J. Mechanical Engineering Science 224, 71–84 (2010)CrossRef
go back to reference Lin, H.Y., Tsai, Y.C.: Free vibration analysis of a uniform multi-span beam carrying multiple spring−mass systems. J. Sound Vib. 302(3), 442–456 (2007)CrossRef Lin, H.Y., Tsai, Y.C.: Free vibration analysis of a uniform multi-span beam carrying multiple spring−mass systems. J. Sound Vib. 302(3), 442–456 (2007)CrossRef
go back to reference Rossit, C.A., Laura, P.A.A.: Free vibrations of a cantilever beam with a spring−mass system attached to the free end. Ocean Eng. 28(7), 933–939 (2001a)CrossRef Rossit, C.A., Laura, P.A.A.: Free vibrations of a cantilever beam with a spring−mass system attached to the free end. Ocean Eng. 28(7), 933–939 (2001a)CrossRef
go back to reference Rossit, C.A., Laura, P.A.A.: Transverse, normal modes of vibration of a cantilever Timoshenko beam with a mass elastically mounted at the free end. Journal of Acoustical Society of America 110(6), 2837–2840 (2001b)CrossRef Rossit, C.A., Laura, P.A.A.: Transverse, normal modes of vibration of a cantilever Timoshenko beam with a mass elastically mounted at the free end. Journal of Acoustical Society of America 110(6), 2837–2840 (2001b)CrossRef
go back to reference Tang, H.B., et al.: Vibration analysis for a coupled beam-sdof system by using the recurrence equation method. J. Sound Vib. 311(3–5), 912–923 (2008)CrossRef Tang, H.B., et al.: Vibration analysis for a coupled beam-sdof system by using the recurrence equation method. J. Sound Vib. 311(3–5), 912–923 (2008)CrossRef
go back to reference Wang, J.R., et al.: Free vibration analysis of a Timoshenko beam carrying multiple spring−mass system with effects of shear deformation and rotatory inertia. Struct Eng Mech 26(1), 1–14 (2007)CrossRef Wang, J.R., et al.: Free vibration analysis of a Timoshenko beam carrying multiple spring−mass system with effects of shear deformation and rotatory inertia. Struct Eng Mech 26(1), 1–14 (2007)CrossRef
go back to reference Williams, F.W., et al.: Towards deep and simple understanding of the transcendental eigenproblem of structural vibrations. J. Sound Vib. 256(4), 681–693 (2002)CrossRef Williams, F.W., et al.: Towards deep and simple understanding of the transcendental eigenproblem of structural vibrations. J. Sound Vib. 256(4), 681–693 (2002)CrossRef
go back to reference Wu, J.S., Chen, C.T.: A lumped-mass TMM for free vibration analysis of a multi-step Timoshenko beam carrying eccentric lumped masses with rotary inertias. J. Sound Vib. 301, 878–897 (2007)CrossRef Wu, J.S., Chen, C.T.: A lumped-mass TMM for free vibration analysis of a multi-step Timoshenko beam carrying eccentric lumped masses with rotary inertias. J. Sound Vib. 301, 878–897 (2007)CrossRef
go back to reference Yildirim, V.: Effect of the longitudinal to transverse moduli ratio on the in-plane natural frequencies of symmetric cross-ply laminated beams by the stiffness method. Compos. Struct. 50, 319–326 (2000)CrossRef Yildirim, V.: Effect of the longitudinal to transverse moduli ratio on the in-plane natural frequencies of symmetric cross-ply laminated beams by the stiffness method. Compos. Struct. 50, 319–326 (2000)CrossRef
go back to reference Yin, X., Zhang, J.: Modeling the dynamic flow-fiber interaction for microscopic biofluid systems. J. Biomech. 46, 314–318 (2013)CrossRef Yin, X., Zhang, J.: Modeling the dynamic flow-fiber interaction for microscopic biofluid systems. J. Biomech. 46, 314–318 (2013)CrossRef
go back to reference Zhi-Jing Wu and Feng-Ming Li: Vibration band-gap properties of three-dimensional Kagome Lattices using the spectral element method. J. Sound Vib. 341, 162–173 (2015)CrossRef Zhi-Jing Wu and Feng-Ming Li: Vibration band-gap properties of three-dimensional Kagome Lattices using the spectral element method. J. Sound Vib. 341, 162–173 (2015)CrossRef
go back to reference Zhijing, Wu, et al.: Band-gap analysis of a novel lattice with a hierarchical periodicity using the spectral element method. J. Sound Vib. 421, 246–260 (2018)CrossRef Zhijing, Wu, et al.: Band-gap analysis of a novel lattice with a hierarchical periodicity using the spectral element method. J. Sound Vib. 421, 246–260 (2018)CrossRef
go back to reference Zhou, D.: Free vibration of multi-span Timoshenko beams using static Timoshenko beam functions. J. Sound Vib. 241(4), 725–734 (2001)CrossRef Zhou, D.: Free vibration of multi-span Timoshenko beams using static Timoshenko beam functions. J. Sound Vib. 241(4), 725–734 (2001)CrossRef
go back to reference Zhou, Ding, Ji, Tianjian: Dynamic characteristics of a beam and distributed spring−mass system. Int. J. Solids Struct. 43, 5555–5569 (2006)MATHCrossRef Zhou, Ding, Ji, Tianjian: Dynamic characteristics of a beam and distributed spring−mass system. Int. J. Solids Struct. 43, 5555–5569 (2006)MATHCrossRef
Metadata
Title
Dynamic stiffness approach to vibration transmission within a beam structure carrying spring–mass systems
Authors
Hui Li
Xue Wen Yin
Wen Wei Wu
Publication date
10-10-2019
Publisher
Springer Netherlands
Published in
International Journal of Mechanics and Materials in Design / Issue 2/2020
Print ISSN: 1569-1713
Electronic ISSN: 1573-8841
DOI
https://doi.org/10.1007/s10999-019-09474-w

Other articles of this Issue 2/2020

International Journal of Mechanics and Materials in Design 2/2020 Go to the issue

Premium Partners