Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

14-02-2020 | Original Article | Issue 8/2020

International Journal of Machine Learning and Cybernetics 8/2020

Dynamic uncertain causality graph based on cloud model theory for knowledge representation and reasoning

Journal:
International Journal of Machine Learning and Cybernetics > Issue 8/2020
Authors:
Li Li, Yongfang Xie, Xiaofang Chen, Weichao Yue, Zhaohui Zeng
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The dynamic uncertain causality graph (DUCG), which has been widely applied in many fields, is an important modelling technique for knowledge representation and reasoning. However, the extant DUCG models have been criticized because they cannot precisely represent experts’ knowledge owing to the ignorance of the fuzziness and randomness of uncertain knowledge. In response, we propose a new type of DUCG model called the cloud reasoning dynamic uncertain causality graph (CDUCG). The CDUCG model, which is based on cloud model theory, can handle with the fuzziness and randomness of uncertain information simultaneously. Moreover, an inference algorithm based on the combination of CDUCG and the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) is proposed to implement fuzzy knowledge inference effectively and thus make the expert systems more dependable and intelligent. Finally, illustrative examples and an industrial application concerning root cause analysis of aluminum electrolysis are provided to demonstrate the proposed CDUCG model. And experimental results show that the new CDUCG model is flexible and reliable for knowledge representation and reasoning.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 8/2020

International Journal of Machine Learning and Cybernetics 8/2020 Go to the issue