Skip to main content
Top
Published in:

25-08-2022

Dynamical Bifurcations in a Fractional-Order Neural Network with Nonidentical Communication Delays

Authors: Shansong Mo, Chengdai Huang, Jinde Cao, Ahmed Alsaedi

Published in: Cognitive Computation | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Although the number of investigation fruits on neural networks is growing explosively, the majority of such research effort is devoted to integer-order neural networks, while only a few are on fractional-order neural networks (FONNs). By arguing the associated characteristic equation of the proposed network, we establish delay-dependent stability conditions and the bifurcation point. Then selecting the communication delay as the bifurcation parameter and the other delay as the constant in its stability interval, the conditions for the occurrence of Hopf bifurcation are established. Then, we confirm the conditions by numerical simulation. It is indicated that the stability of the FONN remains unchanged with the lesser control delay, and will not exist once the delay outnumbers its critical value. And we discover that compared with integer-order neural networks the convergence time to the equilibrium point of FONN is shorter for the same system parameters. It detects that fractional orders are able to advance(postpone) the generation of the bifurcations of the developed FONN. The paper demonstrates that the fractional orders have significant effects on the stability of the FONN. Finally, the theoretical results are authenticated by numerical simulations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kulkarni SR, Rajendran B. Spiking neural networks for handwritten digit recognition–supervised learning and network optimization. Neural Netw. 2018;103:118–27.CrossRef Kulkarni SR, Rajendran B. Spiking neural networks for handwritten digit recognition–supervised learning and network optimization. Neural Netw. 2018;103:118–27.CrossRef
2.
go back to reference Sadeghpour M, Khodabakhsh M, Salarieh H. Intelligent control of chaos using linear feedback controller and neural network identifier. Commun Nonlinear Sci Numer Simul. 2012;17(12):4731–9.CrossRefMATH Sadeghpour M, Khodabakhsh M, Salarieh H. Intelligent control of chaos using linear feedback controller and neural network identifier. Commun Nonlinear Sci Numer Simul. 2012;17(12):4731–9.CrossRefMATH
3.
go back to reference Anderson JA. A simple neural network generating an interactive memory. Math Biosci. 1972;14(3–4):197–220.CrossRefMATH Anderson JA. A simple neural network generating an interactive memory. Math Biosci. 1972;14(3–4):197–220.CrossRefMATH
4.
go back to reference Forti M, Tesi A. New conditions for global stability of neural networks with application to linear and quadratic programming problems. IEEE Trans Circuits Syst I Fundam Theory Appl. 1995;42(7):354–66.MathSciNetCrossRefMATH Forti M, Tesi A. New conditions for global stability of neural networks with application to linear and quadratic programming problems. IEEE Trans Circuits Syst I Fundam Theory Appl. 1995;42(7):354–66.MathSciNetCrossRefMATH
5.
go back to reference Abbas S, Coronel A, Pinto M, Tyagi S. Exponential approximation of solutions of bidirectional neural networks model with positive delay. Neural Parallel Sci Comput. 2018;26(1):1–29. Abbas S, Coronel A, Pinto M, Tyagi S. Exponential approximation of solutions of bidirectional neural networks model with positive delay. Neural Parallel Sci Comput. 2018;26(1):1–29.
6.
go back to reference Chen L, Yin H, Huang T, Yuan L, Zheng S, Yin L. Chaos in fractional-order discrete neural networks with application to image encryption. Neural Netw. 2020;125:174–84.CrossRef Chen L, Yin H, Huang T, Yuan L, Zheng S, Yin L. Chaos in fractional-order discrete neural networks with application to image encryption. Neural Netw. 2020;125:174–84.CrossRef
7.
go back to reference Yang F, Mou J, Liu J, Ma C, Yan H. Characteristic analysis of the fractional-order hyperchaotic complex system and its image encryption application. Signal Process. 2020;169:107373. Yang F, Mou J, Liu J, Ma C, Yan H. Characteristic analysis of the fractional-order hyperchaotic complex system and its image encryption application. Signal Process. 2020;169:107373.
9.
go back to reference Heymans N, Bauwens J-C. Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheol Acta. 1994;33(3):210–9.CrossRef Heymans N, Bauwens J-C. Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheol Acta. 1994;33(3):210–9.CrossRef
10.
go back to reference Sohail A, Bég O, Li Z, Celik S. Physics of fractional imaging in biomedicine. Prog Biophys Mol Biol. 2018;140:13–20.CrossRef Sohail A, Bég O, Li Z, Celik S. Physics of fractional imaging in biomedicine. Prog Biophys Mol Biol. 2018;140:13–20.CrossRef
11.
go back to reference Freeborn TJ. A survey of fractional-order circuit models for biology and biomedicine. IEEE J Emerging Sel Top Circuits Syst. 2013;3(3):416–24.CrossRef Freeborn TJ. A survey of fractional-order circuit models for biology and biomedicine. IEEE J Emerging Sel Top Circuits Syst. 2013;3(3):416–24.CrossRef
12.
go back to reference Pu Y, Yuan X, Yu B. Analog circuit implementation of fractional-order memristor: arbitrary-order lattice scaling fracmemristor. IEEE Trans Circuits Syst I Regul Pap. 2018;65(9):2903–16.MathSciNetCrossRef Pu Y, Yuan X, Yu B. Analog circuit implementation of fractional-order memristor: arbitrary-order lattice scaling fracmemristor. IEEE Trans Circuits Syst I Regul Pap. 2018;65(9):2903–16.MathSciNetCrossRef
13.
go back to reference Anastasio TJ. The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biol Cybern. 1994;72(1):69–79.CrossRef Anastasio TJ. The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biol Cybern. 1994;72(1):69–79.CrossRef
14.
15.
go back to reference Sanchez L, Otero J, Ansean D, Couso I. Health assessment of LFP automotive batteries using a fractional-order neural network. Neurocomputing. 2020;391:345–54.CrossRef Sanchez L, Otero J, Ansean D, Couso I. Health assessment of LFP automotive batteries using a fractional-order neural network. Neurocomputing. 2020;391:345–54.CrossRef
16.
go back to reference Aslipour Z, Yazdizadeh A. Identification of nonlinear systems using adaptive variable-order fractional neural networks (case study: A windturbine with practical results). Eng Appl Artif Intell. 2019;85:462–473. Aslipour Z, Yazdizadeh A. Identification of nonlinear systems using adaptive variable-order fractional neural networks (case study: A windturbine with practical results). Eng Appl Artif Intell. 2019;85:462–473.
17.
go back to reference Srivastava HM, Abbas S, Tyagi S, Lassoued D. Global exponential stability of fractional-order impulsive neural network with time-varying and distributed delay. Math Methods Appl Sci. 2018;41(5):2095–104.MathSciNetCrossRefMATH Srivastava HM, Abbas S, Tyagi S, Lassoued D. Global exponential stability of fractional-order impulsive neural network with time-varying and distributed delay. Math Methods Appl Sci. 2018;41(5):2095–104.MathSciNetCrossRefMATH
18.
go back to reference Yu W, Cao J. Stability and HOPF bifurcation analysis on a four-neuron BAM neural network with time delays. Phys Lett A. 2006;351(1–2):64–78.CrossRefMATH Yu W, Cao J. Stability and HOPF bifurcation analysis on a four-neuron BAM neural network with time delays. Phys Lett A. 2006;351(1–2):64–78.CrossRefMATH
19.
go back to reference Bairagi N, Jana D. On the stability and Hopf bifurcation of a delay-induced predator–prey system with habitat complexity. Appl Math Model. 2011;35(7):3255–67.MathSciNetCrossRefMATH Bairagi N, Jana D. On the stability and Hopf bifurcation of a delay-induced predator–prey system with habitat complexity. Appl Math Model. 2011;35(7):3255–67.MathSciNetCrossRefMATH
20.
go back to reference Dubey B, Kumar A, Maiti AP. Global stability and HOPF-bifurcation of prey-predator system with two discrete delays including habitat complexity and prey refuge. Commun Nonlinear Sci Numer Simul. 2019;67:528–54.MathSciNetCrossRefMATH Dubey B, Kumar A, Maiti AP. Global stability and HOPF-bifurcation of prey-predator system with two discrete delays including habitat complexity and prey refuge. Commun Nonlinear Sci Numer Simul. 2019;67:528–54.MathSciNetCrossRefMATH
22.
go back to reference Wu J. Introduction to neural dynamics and signal transmission delay, de Gruyter. 2011. Wu J. Introduction to neural dynamics and signal transmission delay, de Gruyter. 2011.
23.
go back to reference Han F, Wang Z, Du Y, Sun X, Zhang B. Robust synchronization of bursting Hodgkin-Huxley neuronal systems coupled by delayed chemical synapses. Int J Non-Linear Mech. 2015;70:105–11.CrossRef Han F, Wang Z, Du Y, Sun X, Zhang B. Robust synchronization of bursting Hodgkin-Huxley neuronal systems coupled by delayed chemical synapses. Int J Non-Linear Mech. 2015;70:105–11.CrossRef
24.
go back to reference Zhou S, Xiao M, Wang L, Cheng Z. Bifurcation and oscillations of a multi-ring coupling neural network with discrete delays. Cogn Comput. 2021;13(5):1233–45.CrossRef Zhou S, Xiao M, Wang L, Cheng Z. Bifurcation and oscillations of a multi-ring coupling neural network with discrete delays. Cogn Comput. 2021;13(5):1233–45.CrossRef
25.
go back to reference Huang C, Nie X, Zhao X, Song Q, Tu Z, Xiao M, Cao J. Novel bifurcation results for a delayed fractional-order quaternion-valued neural network. Neural Netw. 2019;117:67–93.CrossRefMATH Huang C, Nie X, Zhao X, Song Q, Tu Z, Xiao M, Cao J. Novel bifurcation results for a delayed fractional-order quaternion-valued neural network. Neural Netw. 2019;117:67–93.CrossRefMATH
26.
go back to reference Ding D, Yao X, Zhang H. Complex projection synchronization of fractional-order complex-valued memristive neural networks with multiple delays. Neural Process Lett. 2020;51(1):325–45.CrossRef Ding D, Yao X, Zhang H. Complex projection synchronization of fractional-order complex-valued memristive neural networks with multiple delays. Neural Process Lett. 2020;51(1):325–45.CrossRef
27.
go back to reference Rihan F, Velmurugan G. Dynamics of fractional-order delay differential model for tumor-immune system. Chaos, Solitons Fractals. 2020;132:109592. Rihan F, Velmurugan G. Dynamics of fractional-order delay differential model for tumor-immune system. Chaos, Solitons Fractals. 2020;132:109592.
28.
go back to reference Huang C, Cao J. Bifurcations induced by self-connection delay in high-order fractional neural networks. Neural Process Lett. 2021;53(1):637–51.CrossRef Huang C, Cao J. Bifurcations induced by self-connection delay in high-order fractional neural networks. Neural Process Lett. 2021;53(1):637–51.CrossRef
29.
go back to reference Huang C, Liu H, Chen Y, Chen X, Song F. Dynamics of a fractional-order BAM neural network with leakage delay and communication delay. Fractals. 2021;29(03):2150073.CrossRefMATH Huang C, Liu H, Chen Y, Chen X, Song F. Dynamics of a fractional-order BAM neural network with leakage delay and communication delay. Fractals. 2021;29(03):2150073.CrossRefMATH
30.
go back to reference Xu C, Liu Z, Liao M, Li P, Xiao Q, Yuan S. Fractional-order bidirectional associate memory (BAM) neural networks with multiple delays: The case of HOPF bifurcation. Math Comput Simul. 2021;182:471–94.MathSciNetCrossRefMATH Xu C, Liu Z, Liao M, Li P, Xiao Q, Yuan S. Fractional-order bidirectional associate memory (BAM) neural networks with multiple delays: The case of HOPF bifurcation. Math Comput Simul. 2021;182:471–94.MathSciNetCrossRefMATH
31.
go back to reference Li S, Huang C, Yuan S. Hopf bifurcation of a fractional-order double-ring structured neural network model with multiple communication delays. Nonlinear Dyn. 2022;1–18. Li S, Huang C, Yuan S. Hopf bifurcation of a fractional-order double-ring structured neural network model with multiple communication delays. Nonlinear Dyn. 2022;1–18.
32.
33.
go back to reference Podlubny I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier; 1998. Podlubny I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier; 1998.
34.
go back to reference Cao J, Guerrini L, Cheng Z. Stability and HOPF bifurcation of controlled complex networks model with two delays. Appl Math Comput. 2019;343:21–9.MathSciNetCrossRefMATH Cao J, Guerrini L, Cheng Z. Stability and HOPF bifurcation of controlled complex networks model with two delays. Appl Math Comput. 2019;343:21–9.MathSciNetCrossRefMATH
35.
go back to reference Deng W, Li C, Lü J. Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 2007;48(4):409–16.MathSciNetCrossRefMATH Deng W, Li C, Lü J. Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 2007;48(4):409–16.MathSciNetCrossRefMATH
Metadata
Title
Dynamical Bifurcations in a Fractional-Order Neural Network with Nonidentical Communication Delays
Authors
Shansong Mo
Chengdai Huang
Jinde Cao
Ahmed Alsaedi
Publication date
25-08-2022
Publisher
Springer US
Published in
Cognitive Computation / Issue 2/2023
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-022-10045-z

Other articles of this Issue 2/2023

Cognitive Computation 2/2023 Go to the issue

Premium Partner