Skip to main content
Top

2019 | OriginalPaper | Chapter

Dynamical Integrity: A Novel Paradigm for Evaluating Load Carrying Capacity

Authors : Giuseppe Rega, Stefano Lenci, Laura Ruzziconi

Published in: Global Nonlinear Dynamics for Engineering Design and System Safety

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter offers an overview of the effects of the research advancements in nonlinear dynamics on the evaluation of system safety. The achievements developed over the last 30 years entailed a substantial change of perspective. After recalling the outstanding contributions due to Euler and Koiter, we focus on Thompson’s intuition of global safety. This concept represents a paramount enhancement, full of theoretical and practical implications. Its relevance as a novel paradigm for evaluating the load carrying capacity of a system is highlighted. Making reference to a variety of different case studies, we emphasize that global safety has induced a deep development in the analysis, control, and design of mechanical and structural systems. Recent results are presented, and the possibility to implement effective dedicated control procedures based on global safety concepts is explored. We stress the importance of global safety for valorizing all the potential of the system and guaranteeing superior targets. The very general character of the dynamical integrity approach to design is highlighted.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alsaleem, F. M., Younis, M. I., & Ruzziconi, L. (2010). An experimental and theoretical investigation of dynamic pull-in in MEMS resonators actuated electrostatically. Journal of Microelectromechanical Systems, 19(4), 794–806.CrossRef Alsaleem, F. M., Younis, M. I., & Ruzziconi, L. (2010). An experimental and theoretical investigation of dynamic pull-in in MEMS resonators actuated electrostatically. Journal of Microelectromechanical Systems, 19(4), 794–806.CrossRef
go back to reference Awrejcewicz, J., & Lamarque, C.-H. (2003). Bifurcation and chaos in nonsmooth mechanical systems. Singapore: World Scientific.CrossRef Awrejcewicz, J., & Lamarque, C.-H. (2003). Bifurcation and chaos in nonsmooth mechanical systems. Singapore: World Scientific.CrossRef
go back to reference Bazant, Z., & Cedolin, L. (1991). Stability of structures. New York: Oxford University Press.MATH Bazant, Z., & Cedolin, L. (1991). Stability of structures. New York: Oxford University Press.MATH
go back to reference Belardinelli, P., & Lenci, S. (2016a). A first parallel programming approach in basins of attraction computation. International Journal of Non-Linear Mechanics, 80, 76–81.CrossRef Belardinelli, P., & Lenci, S. (2016a). A first parallel programming approach in basins of attraction computation. International Journal of Non-Linear Mechanics, 80, 76–81.CrossRef
go back to reference Belardinelli, P., & Lenci, S. (2016b). An efficient parallel implementation of cell mapping methods for MDOF systems. Nonlinear Dynamics, 86(4), 2279–2290.MathSciNetCrossRef Belardinelli, P., & Lenci, S. (2016b). An efficient parallel implementation of cell mapping methods for MDOF systems. Nonlinear Dynamics, 86(4), 2279–2290.MathSciNetCrossRef
go back to reference Belardinelli, P., Lenci, S., & Rega, G. (2018). Seamless variation of isometric and anisometric dynamical integrity measures in basins’ erosion. Communications in Nonlinear Science and Numerical Simulation, 56, 499–507.MathSciNetCrossRef Belardinelli, P., Lenci, S., & Rega, G. (2018). Seamless variation of isometric and anisometric dynamical integrity measures in basins’ erosion. Communications in Nonlinear Science and Numerical Simulation, 56, 499–507.MathSciNetCrossRef
go back to reference Bishop, S. R., & Clifford, M. J. (1996). Zones of chaotic behavior in the parametrically excited pendulum. Journal of Sound and Vibration, 189, 142–147.MathSciNetCrossRef Bishop, S. R., & Clifford, M. J. (1996). Zones of chaotic behavior in the parametrically excited pendulum. Journal of Sound and Vibration, 189, 142–147.MathSciNetCrossRef
go back to reference Budiansky, B., & Hutchinson, J. W. (1964). Dynamics buckling of imperfection-sensitive structures. In Proceedings of the Eleventh International Congress of Applied Mechanics, Munich, Germany (pp. 636–651). Budiansky, B., & Hutchinson, J. W. (1964). Dynamics buckling of imperfection-sensitive structures. In Proceedings of the Eleventh International Congress of Applied Mechanics, Munich, Germany (pp. 636–651).
go back to reference Das, S., & Wahi, P. (2016). Initiation and directional control of period-1 rotation for parametric pendulum. Proceedings of the Royal Society of London A, 472, 20160719.MathSciNetCrossRef Das, S., & Wahi, P. (2016). Initiation and directional control of period-1 rotation for parametric pendulum. Proceedings of the Royal Society of London A, 472, 20160719.MathSciNetCrossRef
go back to reference de Souza Jr, J. R., & Rodrigues, M. L. (2002). An investigation into mechanisms of loss of safe basins in a 2 D.O.F. nonlinear oscillator. Journal of the Brazilian Society of Mechanical Sciences, 24, 93–98.CrossRef de Souza Jr, J. R., & Rodrigues, M. L. (2002). An investigation into mechanisms of loss of safe basins in a 2 D.O.F. nonlinear oscillator. Journal of the Brazilian Society of Mechanical Sciences, 24, 93–98.CrossRef
go back to reference Eason, R., & Dick, A. J. (2014). A parallelized multi-degrees-of-freedom cell map method. Nonlinear Dynamics, 77(3), 467–479.CrossRef Eason, R., & Dick, A. J. (2014). A parallelized multi-degrees-of-freedom cell map method. Nonlinear Dynamics, 77(3), 467–479.CrossRef
go back to reference Euler, L. (1744). Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, Sive Solutio Problematis Isoperimetrici Latissimo Sensu Accepti, Addentamentum 1: de Curvis Elasticis. Laussanae et Genevae, Apud Marcum-Michaelem, Bousquet et Socios. Euler, L. (1744). Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, Sive Solutio Problematis Isoperimetrici Latissimo Sensu Accepti, Addentamentum 1: de Curvis Elasticis. Laussanae et Genevae, Apud Marcum-Michaelem, Bousquet et Socios.
go back to reference Gan, C. B., & He, S. M. (2007). Studies on structural safety in stochastically excited Duffing oscillator with double potential wells. Acta Mechanica Sinica, 23(5), 577–583.MathSciNetCrossRef Gan, C. B., & He, S. M. (2007). Studies on structural safety in stochastically excited Duffing oscillator with double potential wells. Acta Mechanica Sinica, 23(5), 577–583.MathSciNetCrossRef
go back to reference Gonçalves, P. B., & Del Prado, Z. J. G. N. (2002). Nonlinear oscillations and stability of parametrically excited cylindrical shells. Meccanica, 37, 569–597.CrossRef Gonçalves, P. B., & Del Prado, Z. J. G. N. (2002). Nonlinear oscillations and stability of parametrically excited cylindrical shells. Meccanica, 37, 569–597.CrossRef
go back to reference Gonçalves, P. B., & Del Prado, Z. J. G. N. (2005). Low-dimensional Galerkin models for nonlinear vibration and instability analysis of cylindrical shells. Nonlinear Dynamics, 41, 129–145.MathSciNetCrossRef Gonçalves, P. B., & Del Prado, Z. J. G. N. (2005). Low-dimensional Galerkin models for nonlinear vibration and instability analysis of cylindrical shells. Nonlinear Dynamics, 41, 129–145.MathSciNetCrossRef
go back to reference Gonçalves, P. B., Orlando, D., Lenci, S., & Rega, G. (2018). Nonlinear dynamics, safety and control of structures liable to interactive unstable buckling. In S. Lenci & G. Rega (Eds.), Global nonlinear dynamics for engineering design and system safety (Vol. 588, pp. 167–228). CISM Courses and Lectures. Cham: Springer. Gonçalves, P. B., Orlando, D., Lenci, S., & Rega, G. (2018). Nonlinear dynamics, safety and control of structures liable to interactive unstable buckling. In S. Lenci & G. Rega (Eds.), Global nonlinear dynamics for engineering design and system safety (Vol. 588, pp. 167–228). CISM Courses and Lectures. Cham: Springer.
go back to reference Gonçalves, P. B., & Santee, D. (2008). Influence of uncertainties on the dynamic buckling loads of structures liable to asymmetric post-buckling behavior. Mathematical Problems in Engineering, 2008, 490137-1–490137-24. Gonçalves, P. B., & Santee, D. (2008). Influence of uncertainties on the dynamic buckling loads of structures liable to asymmetric post-buckling behavior. Mathematical Problems in Engineering, 2008, 490137-1–490137-24.
go back to reference Gonçalves, P. B., Silva, F. M. A., & Del Prado, Z. J. G. N. (2007). Global stability analysis of parametrically excited cylindrical shells through the evolution of basin boundaries. Nonlinear Dynamics, 50, 121–145.MathSciNetCrossRef Gonçalves, P. B., Silva, F. M. A., & Del Prado, Z. J. G. N. (2007). Global stability analysis of parametrically excited cylindrical shells through the evolution of basin boundaries. Nonlinear Dynamics, 50, 121–145.MathSciNetCrossRef
go back to reference Gonçalves, P. B., Silva, F. M. A., Rega, G., & Lenci, S. (2011). Global dynamics and integrity of a two-dof model of a parametrically excited cylindrical shell. Nonlinear Dynamics, 63, 61–82.MathSciNetCrossRef Gonçalves, P. B., Silva, F. M. A., Rega, G., & Lenci, S. (2011). Global dynamics and integrity of a two-dof model of a parametrically excited cylindrical shell. Nonlinear Dynamics, 63, 61–82.MathSciNetCrossRef
go back to reference Grebogi, C., Ott, E., & Yorke, J. A. (1983). Crises, sudden changes in chaotic attractors and transient chaos. Physica D: Nonlinear Phenomena, 7, 181–200.MathSciNetCrossRef Grebogi, C., Ott, E., & Yorke, J. A. (1983). Crises, sudden changes in chaotic attractors and transient chaos. Physica D: Nonlinear Phenomena, 7, 181–200.MathSciNetCrossRef
go back to reference Guckenheimer, J., & Holmes, P. J. (1983). Nonlinear oscillations, dynamical systems and bifurcation of vector fields. New York: Springer.CrossRef Guckenheimer, J., & Holmes, P. J. (1983). Nonlinear oscillations, dynamical systems and bifurcation of vector fields. New York: Springer.CrossRef
go back to reference Hong, L., & Sun, J. (2006). Bifurcations of a forced Duffing oscillator in the presence of fuzzy noise by the generalized cell mapping method. International Journal of Bifurcation and Chaos, 16(10), 3043–3051.CrossRef Hong, L., & Sun, J. (2006). Bifurcations of a forced Duffing oscillator in the presence of fuzzy noise by the generalized cell mapping method. International Journal of Bifurcation and Chaos, 16(10), 3043–3051.CrossRef
go back to reference Housner, G. W. (1963). The behaviour of inverted pendulum structures during earthquakes. Bulletin of the Seismological Society of America, 53(2), 403–417. Housner, G. W. (1963). The behaviour of inverted pendulum structures during earthquakes. Bulletin of the Seismological Society of America, 53(2), 403–417.
go back to reference Hsu, C. S. (1987). Cell to cell mapping: A method of global analysis for nonlinear system. New York: Springer.CrossRef Hsu, C. S. (1987). Cell to cell mapping: A method of global analysis for nonlinear system. New York: Springer.CrossRef
go back to reference Hsu, C. S., & Chiu, H. M. (1987). Global analysis of a system with multiple responses including a strange attractor. Journal of Sound and Vibration, 114(2), 203–218.MathSciNetCrossRef Hsu, C. S., & Chiu, H. M. (1987). Global analysis of a system with multiple responses including a strange attractor. Journal of Sound and Vibration, 114(2), 203–218.MathSciNetCrossRef
go back to reference Kirkpatrick, P. (1927). Seismic measurements by the overthrow of columns. Bulletin of the Seismological Society of America, 17, 95–109. Kirkpatrick, P. (1927). Seismic measurements by the overthrow of columns. Bulletin of the Seismological Society of America, 17, 95–109.
go back to reference Koch, B. P., & Leven, R. W. (1985). Subharmonic and homoclinic bifurcations in a parametrically forced pendulum. Physica D: Nonlinear Phenomena, 16, 1–13.MathSciNetCrossRef Koch, B. P., & Leven, R. W. (1985). Subharmonic and homoclinic bifurcations in a parametrically forced pendulum. Physica D: Nonlinear Phenomena, 16, 1–13.MathSciNetCrossRef
go back to reference Koh, A. S. (1986). Rocking of rigid blocks on randomly shaking foundations. Nuclear Engineering and Design, 97, 269–276.CrossRef Koh, A. S. (1986). Rocking of rigid blocks on randomly shaking foundations. Nuclear Engineering and Design, 97, 269–276.CrossRef
go back to reference Koiter, W. T. (1945). Over de Stabiliteit van het Elastisch Evenwicht. Ph.D. Thesis, Delft University, Delft, The Netherlands. English translation: Koiter, W. T. (1967). On the stability of elastic equilibrium. NASA technical translation F-10, 833, Clearinghouse, US Department of Commerce/National Bureau of Standards N67–25033. Koiter, W. T. (1945). Over de Stabiliteit van het Elastisch Evenwicht. Ph.D. Thesis, Delft University, Delft, The Netherlands. English translation: Koiter, W. T. (1967). On the stability of elastic equilibrium. NASA technical translation F-10, 833, Clearinghouse, US Department of Commerce/National Bureau of Standards N67–25033.
go back to reference Kreuzer, E., & Lagemann, B. (1996). Cell mapping for multi-degree-of-freedom-systems parallel computing in nonlinear dynamics. Chaos, Solitons & Fractals, 7(10), 1683–1691.MathSciNetCrossRef Kreuzer, E., & Lagemann, B. (1996). Cell mapping for multi-degree-of-freedom-systems parallel computing in nonlinear dynamics. Chaos, Solitons & Fractals, 7(10), 1683–1691.MathSciNetCrossRef
go back to reference Kustnezov, Y. A. (1995). Elements of applied bifurcation theory. New York: Springer. Kustnezov, Y. A. (1995). Elements of applied bifurcation theory. New York: Springer.
go back to reference Lansbury, A. N., Thompson, J. M. T., & Stewart, H. B. (1992). Basin erosion in the twin-well Duffing oscillator: Two distinct bifurcation scenarios. International Journal of Bifurcation and Chaos, 2, 505–532.MathSciNetCrossRef Lansbury, A. N., Thompson, J. M. T., & Stewart, H. B. (1992). Basin erosion in the twin-well Duffing oscillator: Two distinct bifurcation scenarios. International Journal of Bifurcation and Chaos, 2, 505–532.MathSciNetCrossRef
go back to reference Leine, R. I. (2010). The historical development of classical stability concepts: Lagrange, Poisson and Lyapunov stability. Nonlinear Dynamics, 59, 173–182.MathSciNetCrossRef Leine, R. I. (2010). The historical development of classical stability concepts: Lagrange, Poisson and Lyapunov stability. Nonlinear Dynamics, 59, 173–182.MathSciNetCrossRef
go back to reference Lenci, S., Brocchini, M., & Lorenzoni, C. (2012a). Experimental rotations of a pendulum on water waves. ASME Journal of Computational and Nonlinear Dynamics, 7(1), 011007-1–011007-9.CrossRef Lenci, S., Brocchini, M., & Lorenzoni, C. (2012a). Experimental rotations of a pendulum on water waves. ASME Journal of Computational and Nonlinear Dynamics, 7(1), 011007-1–011007-9.CrossRef
go back to reference Lenci, S., Orlando, D., Rega, G., & Gonçalves, P. B. (2012b). Controlling practical stability and safety of mechanical systems by exploiting chaos properties. Chaos, 22(4), 047502-1–047502-15. Lenci, S., Orlando, D., Rega, G., & Gonçalves, P. B. (2012b). Controlling practical stability and safety of mechanical systems by exploiting chaos properties. Chaos, 22(4), 047502-1–047502-15.
go back to reference Lenci, S., & Rega, G. (1998a). A procedure for reducing the chaotic response region in an impact mechanical system. Nonlinear Dynamics, 15, 391–409.MathSciNetCrossRef Lenci, S., & Rega, G. (1998a). A procedure for reducing the chaotic response region in an impact mechanical system. Nonlinear Dynamics, 15, 391–409.MathSciNetCrossRef
go back to reference Lenci, S., & Rega, G. (1998b). Controlling nonlinear dynamics in a two-well impact system. Part I. Attractors and bifurcation scenario under symmetric excitations. International Journal of Bifurcation and Chaos, 8, 2387–2408.MathSciNetCrossRef Lenci, S., & Rega, G. (1998b). Controlling nonlinear dynamics in a two-well impact system. Part I. Attractors and bifurcation scenario under symmetric excitations. International Journal of Bifurcation and Chaos, 8, 2387–2408.MathSciNetCrossRef
go back to reference Lenci, S., & Rega, G. (1998c). Controlling nonlinear dynamics in a two-well impact system. Part II. Attractors and bifurcation scenario under unsymmetric optimal excitations. International Journal of Bifurcation and Chaos, 8, 2409–2424.MathSciNetCrossRef Lenci, S., & Rega, G. (1998c). Controlling nonlinear dynamics in a two-well impact system. Part II. Attractors and bifurcation scenario under unsymmetric optimal excitations. International Journal of Bifurcation and Chaos, 8, 2409–2424.MathSciNetCrossRef
go back to reference Lenci, S., & Rega, G. (2003a). Optimal control of homoclinic bifurcation: Theoretical treatment and practical reduction of safe basin erosion in the Helmholtz oscillator. Journal of Vibration and Control, 9, 281–315.MathSciNetMATH Lenci, S., & Rega, G. (2003a). Optimal control of homoclinic bifurcation: Theoretical treatment and practical reduction of safe basin erosion in the Helmholtz oscillator. Journal of Vibration and Control, 9, 281–315.MathSciNetMATH
go back to reference Lenci, S., & Rega, G. (2003b). Optimal control of nonregular dynamics in a Duffing oscillator. Nonlinear Dynamics, 33, 71–86.MathSciNetCrossRef Lenci, S., & Rega, G. (2003b). Optimal control of nonregular dynamics in a Duffing oscillator. Nonlinear Dynamics, 33, 71–86.MathSciNetCrossRef
go back to reference Lenci, S., & Rega, G. (2003c). Optimal numerical control of single-well to cross-well chaos transition in mechanical systems. Chaos, Solitons & Fractals, 15, 173–186.MathSciNetCrossRef Lenci, S., & Rega, G. (2003c). Optimal numerical control of single-well to cross-well chaos transition in mechanical systems. Chaos, Solitons & Fractals, 15, 173–186.MathSciNetCrossRef
go back to reference Lenci, S., & Rega, G. (2004a). A dynamical systems analysis of the overturning of rigid blocks. In CD-Rom Proceedings of the XXI International Conference of Theoretical and Applied Mechanics, IPPT PAN, Warsaw, Poland, 15–21 August 2004. ISBN 83-89687-01-1. Lenci, S., & Rega, G. (2004a). A dynamical systems analysis of the overturning of rigid blocks. In CD-Rom Proceedings of the XXI International Conference of Theoretical and Applied Mechanics, IPPT PAN, Warsaw, Poland, 15–21 August 2004. ISBN 83-89687-01-1.
go back to reference Lenci, S., & Rega, G. (2004b). A unified control framework of the nonregular dynamics of mechanical oscillators. Journal of Sound and Vibration, 278(4–5), 1051–1080.MathSciNetCrossRef Lenci, S., & Rega, G. (2004b). A unified control framework of the nonregular dynamics of mechanical oscillators. Journal of Sound and Vibration, 278(4–5), 1051–1080.MathSciNetCrossRef
go back to reference Lenci, S., & Rega, G. (2004c). Global optimal control and system-dependent solutions in the hardening Helmholtz-Duffing oscillator. Chaos, Solitons & Fractals, 21, 1031–1046.MathSciNetCrossRef Lenci, S., & Rega, G. (2004c). Global optimal control and system-dependent solutions in the hardening Helmholtz-Duffing oscillator. Chaos, Solitons & Fractals, 21, 1031–1046.MathSciNetCrossRef
go back to reference Lenci, S., & Rega, G. (2004d). Numerical aspects in the optimal control and anti-control of rigid block dynamics. In Proceedings of the Sixth World Conference on Computational Mechanics, WCCM VI, Beijing, China, 5–10 September 2004. Lenci, S., & Rega, G. (2004d). Numerical aspects in the optimal control and anti-control of rigid block dynamics. In Proceedings of the Sixth World Conference on Computational Mechanics, WCCM VI, Beijing, China, 5–10 September 2004.
go back to reference Lenci, S., & Rega, G. (2005). Heteroclinic bifurcations and optimal control in the nonlinear rocking dynamics of generic and slender rigid blocks. International Journal of Bifurcation and Chaos, 15(6), 1901–1918.MathSciNetCrossRef Lenci, S., & Rega, G. (2005). Heteroclinic bifurcations and optimal control in the nonlinear rocking dynamics of generic and slender rigid blocks. International Journal of Bifurcation and Chaos, 15(6), 1901–1918.MathSciNetCrossRef
go back to reference Lenci, S., & Rega, G. (2006a). A dynamical systems approach to the overturning of rocking blocks. Chaos, Solitons & Fractals, 28, 527–542.MathSciNetCrossRef Lenci, S., & Rega, G. (2006a). A dynamical systems approach to the overturning of rocking blocks. Chaos, Solitons & Fractals, 28, 527–542.MathSciNetCrossRef
go back to reference Lenci, S., & Rega, G. (2006b). Control of pull-in dynamics in a nonlinear thermoelastic electrically actuated microbeam. Journal of Micromechanics and Microengineering, 16, 390–401.CrossRef Lenci, S., & Rega, G. (2006b). Control of pull-in dynamics in a nonlinear thermoelastic electrically actuated microbeam. Journal of Micromechanics and Microengineering, 16, 390–401.CrossRef
go back to reference Lenci, S., & Rega, G. (2006c). Optimal control and anti-control of the nonlinear dynamics of a rigid block. Philosophical Transactions of the Royal Society A, 364, 2353–2381.MathSciNetCrossRef Lenci, S., & Rega, G. (2006c). Optimal control and anti-control of the nonlinear dynamics of a rigid block. Philosophical Transactions of the Royal Society A, 364, 2353–2381.MathSciNetCrossRef
go back to reference Lenci, S., & Rega, G. (2008). Competing dynamic solutions in a parametrically excited pendulum: Attractor robustness and basin integrity. ASME Journal of Computational and Nonlinear Dynamics, 3, 041010-1–041010-9.CrossRef Lenci, S., & Rega, G. (2008). Competing dynamic solutions in a parametrically excited pendulum: Attractor robustness and basin integrity. ASME Journal of Computational and Nonlinear Dynamics, 3, 041010-1–041010-9.CrossRef
go back to reference Lenci, S., & Rega, G. (2011a). Experimental versus theoretical robustness of rotating solutions in a parametrically excited pendulum: A dynamical integrity perspective. Physica D: Nonlinear Phenomena, 240, 814–824.CrossRef Lenci, S., & Rega, G. (2011a). Experimental versus theoretical robustness of rotating solutions in a parametrically excited pendulum: A dynamical integrity perspective. Physica D: Nonlinear Phenomena, 240, 814–824.CrossRef
go back to reference Lenci, S., & Rega, G. (2011b). Forced harmonic vibration in a Duffing oscillator with negative linear stiffness and linear viscous damping. In I. Kovacic & M. J. Brennan (Eds.), The Duffing equation: Nonlinear oscillators and their behaviour (pp. 219–276). Wiley. Lenci, S., & Rega, G. (2011b). Forced harmonic vibration in a Duffing oscillator with negative linear stiffness and linear viscous damping. In I. Kovacic & M. J. Brennan (Eds.), The Duffing equation: Nonlinear oscillators and their behaviour (pp. 219–276). Wiley.
go back to reference Lenci, S., & Rega, G. (2011c). Load carrying capacity of systems within a global safety perspective. Part I. Robustness of stable equilibria under imperfections. International Journal of Nonlinear Mechanics, 46, 1232–1239.CrossRef Lenci, S., & Rega, G. (2011c). Load carrying capacity of systems within a global safety perspective. Part I. Robustness of stable equilibria under imperfections. International Journal of Nonlinear Mechanics, 46, 1232–1239.CrossRef
go back to reference Lenci, S., & Rega, G. (2011d). Load carrying capacity of systems within a global safety perspective. Part II. Attractor/basin integrity under dynamic excitations. International Journal of Nonlinear Mechanics, 46, 1240–1251.CrossRef Lenci, S., & Rega, G. (2011d). Load carrying capacity of systems within a global safety perspective. Part II. Attractor/basin integrity under dynamic excitations. International Journal of Nonlinear Mechanics, 46, 1240–1251.CrossRef
go back to reference Lenci, S., Rega, G., & Ruzziconi, L. (2013). Dynamical integrity as a conceptual and operating tool for interpreting/predicting experimental behavior. Philosophical Transactions of the Royal Society of London A, 371(1993), 20120423-1–20120423-19. Lenci, S., Rega, G., & Ruzziconi, L. (2013). Dynamical integrity as a conceptual and operating tool for interpreting/predicting experimental behavior. Philosophical Transactions of the Royal Society of London A, 371(1993), 20120423-1–20120423-19.
go back to reference Lyapunov, A. M. (1892). The general problem of the stability of motion. Ph.D. Thesis, Moscow University, Moscow, Russia. English translation: Lyapunov, A. M. (1992). The general problem of the stability of motion. London: Taylor & Francis. Lyapunov, A. M. (1892). The general problem of the stability of motion. Ph.D. Thesis, Moscow University, Moscow, Russia. English translation: Lyapunov, A. M. (1992). The general problem of the stability of motion. London: Taylor & Francis.
go back to reference Mang, H. A., Jia, X., & Hoenger, G. (2009). Hilltop buckling as the A and Ω in sensitivity analysis of the initial postbuckling behavior of elastic structures. Journal of Civil Engineering and Management, 15, 35–46.CrossRef Mang, H. A., Jia, X., & Hoenger, G. (2009). Hilltop buckling as the A and Ω in sensitivity analysis of the initial postbuckling behavior of elastic structures. Journal of Civil Engineering and Management, 15, 35–46.CrossRef
go back to reference Milne, J. (1881). Experiments in observational seismology. Transactions of the Seismological Society of Japan, 3, 12–64. Milne, J. (1881). Experiments in observational seismology. Transactions of the Seismological Society of Japan, 3, 12–64.
go back to reference Moon, F. C. (1980). Experiments on chaotic motions of a forced nonlinear oscillator: Strange attractors. Journal of Applied Mechanics, 47(3), 638–644.CrossRef Moon, F. C. (1980). Experiments on chaotic motions of a forced nonlinear oscillator: Strange attractors. Journal of Applied Mechanics, 47(3), 638–644.CrossRef
go back to reference Moon, F. C. (1992). Chaotic and fractal dynamics. An introduction for applied scientists and engineers. New York: Wiley. Moon, F. C. (1992). Chaotic and fractal dynamics. An introduction for applied scientists and engineers. New York: Wiley.
go back to reference Nayfeh, A. H., & Balachandran, B. (1995). Applied nonlinear dynamics. New York: Wiley.CrossRef Nayfeh, A. H., & Balachandran, B. (1995). Applied nonlinear dynamics. New York: Wiley.CrossRef
go back to reference Novak, M. (1969). Aeroelastic galloping of prismatic bodies. ASCE Journal of the Engineering Mechanics Division, 95(1), 115–142. Novak, M. (1969). Aeroelastic galloping of prismatic bodies. ASCE Journal of the Engineering Mechanics Division, 95(1), 115–142.
go back to reference Oppenheim, I. J. (1992). The masonry arch as a four-link mechanism under base motion. Earthquake Engineering and Structural Dynamics, 21, 1005–1017.CrossRef Oppenheim, I. J. (1992). The masonry arch as a four-link mechanism under base motion. Earthquake Engineering and Structural Dynamics, 21, 1005–1017.CrossRef
go back to reference Orlando, D., Gonçalves, P. B., Rega, G., & Lenci, S. (2011). Influence of modal coupling on the nonlinear dynamics of Augusti’s model. ASME Journal of Computational and Nonlinear Dynamics, 6, 041014-1–041014-11.CrossRef Orlando, D., Gonçalves, P. B., Rega, G., & Lenci, S. (2011). Influence of modal coupling on the nonlinear dynamics of Augusti’s model. ASME Journal of Computational and Nonlinear Dynamics, 6, 041014-1–041014-11.CrossRef
go back to reference Perry, J. (1881). Note on the rocking of a column. Transactions of the Seismological Society of Japan, 3, 103–106. Perry, J. (1881). Note on the rocking of a column. Transactions of the Seismological Society of Japan, 3, 103–106.
go back to reference Pignataro, M., Rizzi, N., & Luongo, A. (1990). Stability, bifurcation and postcritical behaviour of elastic structures. Amsterdam: Elsevier Science Publishers. Pignataro, M., Rizzi, N., & Luongo, A. (1990). Stability, bifurcation and postcritical behaviour of elastic structures. Amsterdam: Elsevier Science Publishers.
go back to reference Plaut, R. H., Fielder, W. T., & Virgin, L. N. (1996). Fractal behaviour of an asymmetric rigid block overturning due to harmonic motion of a tilted foundation. Chaos, Solitons & Fractals, 7, 177–196.CrossRef Plaut, R. H., Fielder, W. T., & Virgin, L. N. (1996). Fractal behaviour of an asymmetric rigid block overturning due to harmonic motion of a tilted foundation. Chaos, Solitons & Fractals, 7, 177–196.CrossRef
go back to reference Rainey, R. C. T., & Thompson, J. M. T. (1991). The transient capsize diagram—A new method of quantifying stability in waves. Journal of Ship Research, 35(1), 58–62. Rainey, R. C. T., & Thompson, J. M. T. (1991). The transient capsize diagram—A new method of quantifying stability in waves. Journal of Ship Research, 35(1), 58–62.
go back to reference Rega, G., & Lenci, S. (2003). Bifurcations and chaos in single-d.o.f. mechanical systems: Exploiting nonlinear dynamics for their control. In A. Luongo (Ed.), Recent research development in structural dynamics (pp. 331–369). Kerala: Research Signpost. Rega, G., & Lenci, S. (2003). Bifurcations and chaos in single-d.o.f. mechanical systems: Exploiting nonlinear dynamics for their control. In A. Luongo (Ed.), Recent research development in structural dynamics (pp. 331–369). Kerala: Research Signpost.
go back to reference Rega, G., & Lenci, S. (2005). Identifying, evaluating, and controlling dynamical integrity measures in nonlinear mechanical oscillators. Nonlinear Analysis, 63, 902–914.MathSciNetCrossRef Rega, G., & Lenci, S. (2005). Identifying, evaluating, and controlling dynamical integrity measures in nonlinear mechanical oscillators. Nonlinear Analysis, 63, 902–914.MathSciNetCrossRef
go back to reference Rega, G., & Lenci, S. (2008). Dynamical integrity and control of nonlinear mechanical oscillators. Journal of Vibration and Control, 14, 159–179, 2008.CrossRef Rega, G., & Lenci, S. (2008). Dynamical integrity and control of nonlinear mechanical oscillators. Journal of Vibration and Control, 14, 159–179, 2008.CrossRef
go back to reference Rega, G., & Lenci, S. (2009). Recent advances in control of complex dynamics in mechanical and structural systems. In M. A. F. Sanjuan & C. Grebogi (Eds.), Recent progress in controlling chaos (pp. 189–237). Singapore: World Scientific.MATH Rega, G., & Lenci, S. (2009). Recent advances in control of complex dynamics in mechanical and structural systems. In M. A. F. Sanjuan & C. Grebogi (Eds.), Recent progress in controlling chaos (pp. 189–237). Singapore: World Scientific.MATH
go back to reference Rega, G., & Lenci, S. (2015). A global dynamics perspective for system safety from macro- to nanomechanics: Analysis, control, and design engineering. Applied Mechanics Reviews, 67, 050802-1–050802-19. Rega, G., & Lenci, S. (2015). A global dynamics perspective for system safety from macro- to nanomechanics: Analysis, control, and design engineering. Applied Mechanics Reviews, 67, 050802-1–050802-19.
go back to reference Rega, G., Lenci, S., & Thompson, J. M. T. (2010). Controlling chaos: The OGY method, its use in mechanics, and an alternative unified framework for control of non-regular dynamics. In M. Thiel, J. Kurths, M. C. Romano, G. Károlyi, & A. Moura (Eds.), Nonlinear dynamics and chaos: Advances and perspectives (pp. 211–269). Berlin, Heidelberg: Springer.CrossRef Rega, G., Lenci, S., & Thompson, J. M. T. (2010). Controlling chaos: The OGY method, its use in mechanics, and an alternative unified framework for control of non-regular dynamics. In M. Thiel, J. Kurths, M. C. Romano, G. Károlyi, & A. Moura (Eds.), Nonlinear dynamics and chaos: Advances and perspectives (pp. 211–269). Berlin, Heidelberg: Springer.CrossRef
go back to reference Rega, G., & Settimi, V. (2013). Bifurcation, response scenarios and dynamic integrity in a single-mode model of noncontact atomic force microscopy. Nonlinear Dynamics, 73(1–2), 101–123.MathSciNetCrossRef Rega, G., & Settimi, V. (2013). Bifurcation, response scenarios and dynamic integrity in a single-mode model of noncontact atomic force microscopy. Nonlinear Dynamics, 73(1–2), 101–123.MathSciNetCrossRef
go back to reference Ruzziconi, L., Bataineh, A. M., Younis, M. I., Cui, W., & Lenci, S. (2013a). Nonlinear dynamics of an electrically actuated imperfect microbeam resonator: Experimental investigation and reduced-order modeling. Journal of Micromechanics and Microengineering, 23(7), 075012-1–075012-14.CrossRef Ruzziconi, L., Bataineh, A. M., Younis, M. I., Cui, W., & Lenci, S. (2013a). Nonlinear dynamics of an electrically actuated imperfect microbeam resonator: Experimental investigation and reduced-order modeling. Journal of Micromechanics and Microengineering, 23(7), 075012-1–075012-14.CrossRef
go back to reference Ruzziconi, L., Lenci, S., & Younis, M. I. (2013b). An imperfect microbeam under an axial load and electric excitation: Nonlinear phenomena and dynamical integrity. International Journal of Bifurcation and Chaos, 23(2), 1350026-1–1350026-17.MathSciNetCrossRef Ruzziconi, L., Lenci, S., & Younis, M. I. (2013b). An imperfect microbeam under an axial load and electric excitation: Nonlinear phenomena and dynamical integrity. International Journal of Bifurcation and Chaos, 23(2), 1350026-1–1350026-17.MathSciNetCrossRef
go back to reference Ruzziconi, L., Lenci, S., & Younis, M. I. (2018). Interpreting and predicting experimental responses of micro and nano devices via dynamical integrity. In S. Lenci & G. Rega (Eds.), Global nonlinear dynamics for engineering design and system safety (Vol. 588, pp. 113–166). CISM Courses and Lectures. Cham: Springer. Ruzziconi, L., Lenci, S., & Younis, M. I. (2018). Interpreting and predicting experimental responses of micro and nano devices via dynamical integrity. In S. Lenci & G. Rega (Eds.), Global nonlinear dynamics for engineering design and system safety (Vol. 588, pp. 113–166). CISM Courses and Lectures. Cham: Springer.
go back to reference Ruzziconi, L., Younis, M. I., & Lenci, S. (2012). An efficient reduced-order model to investigate the behavior of an imperfect microbeam under axial load and electric excitation. ASME Journal of Computational and Nonlinear Dynamics, 8, 011014-1–011014-9. Ruzziconi, L., Younis, M. I., & Lenci, S. (2012). An efficient reduced-order model to investigate the behavior of an imperfect microbeam under axial load and electric excitation. ASME Journal of Computational and Nonlinear Dynamics, 8, 011014-1–011014-9.
go back to reference Ruzziconi, L., Younis, M. I., & Lenci, S. (2013c). An electrically actuated imperfect microbeam: Dynamical integrity for interpreting and predicting the device response. Meccanica, 48(7), 1761–1775.MathSciNetCrossRef Ruzziconi, L., Younis, M. I., & Lenci, S. (2013c). An electrically actuated imperfect microbeam: Dynamical integrity for interpreting and predicting the device response. Meccanica, 48(7), 1761–1775.MathSciNetCrossRef
go back to reference Ruzziconi, L., Younis, M. I., & Lenci, S. (2013d). Dynamical integrity for interpreting experimental data and ensuring safety in electrostatic MEMS. In M. Wiercigroch, & G. Rega (Eds.), IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design (Vol. 32, pp. 249–261). IUTAM Bookseries. Springer. Ruzziconi, L., Younis, M. I., & Lenci, S. (2013d). Dynamical integrity for interpreting experimental data and ensuring safety in electrostatic MEMS. In M. Wiercigroch, & G. Rega (Eds.), IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design (Vol. 32, pp. 249–261). IUTAM Bookseries. Springer.
go back to reference Ruzziconi, L., Younis, M. I., & Lenci, S. (2013e). Multistability in an electrically actuated carbon nanotube: a dynamical integrity perspective. Nonlinear Dynamics, 74(3), 533–549. Ruzziconi, L., Younis, M. I., & Lenci, S. (2013e). Multistability in an electrically actuated carbon nanotube: a dynamical integrity perspective. Nonlinear Dynamics, 74(3), 533–549.
go back to reference Ruzziconi, L., Younis, M. I., & Lenci, S. (2013f). Parameter identification of an electrically actuated imperfect microbeam. International Journal of Non-Linear Mechanics, 57, 208–219.CrossRef Ruzziconi, L., Younis, M. I., & Lenci, S. (2013f). Parameter identification of an electrically actuated imperfect microbeam. International Journal of Non-Linear Mechanics, 57, 208–219.CrossRef
go back to reference Settimi, V., Gottlieb, O., & Rega, G. (2015). Asymptotic analysis of a noncontact AFM microcantilever sensor with external feedback control. Nonlinear Dynamics, 79(4), 2675–2698.MathSciNetCrossRef Settimi, V., Gottlieb, O., & Rega, G. (2015). Asymptotic analysis of a noncontact AFM microcantilever sensor with external feedback control. Nonlinear Dynamics, 79(4), 2675–2698.MathSciNetCrossRef
go back to reference Settimi, V., & Rega, G. (2016a). Exploiting global dynamics of a noncontact atomic force microcantilever to enhance its dynamical robustness via numerical control. International Journal of Bifurcation and Chaos, 26, 1630018-1–1630018-17.MathSciNetCrossRef Settimi, V., & Rega, G. (2016a). Exploiting global dynamics of a noncontact atomic force microcantilever to enhance its dynamical robustness via numerical control. International Journal of Bifurcation and Chaos, 26, 1630018-1–1630018-17.MathSciNetCrossRef
go back to reference Settimi, V., & Rega, G. (2016b). Global dynamics and integrity in noncontacting atomic force microscopy with feedback control. Nonlinear Dynamics, 86(4), 2261–2277.CrossRef Settimi, V., & Rega, G. (2016b). Global dynamics and integrity in noncontacting atomic force microscopy with feedback control. Nonlinear Dynamics, 86(4), 2261–2277.CrossRef
go back to reference Settimi, V., & Rega, G. (2016c). Influence of a locally-tailored external feedback control on the overall dynamics of a non-contact AFM model. International Journal of Non-Linear Mechanics, 80, 144–159.CrossRef Settimi, V., & Rega, G. (2016c). Influence of a locally-tailored external feedback control on the overall dynamics of a non-contact AFM model. International Journal of Non-Linear Mechanics, 80, 144–159.CrossRef
go back to reference Settimi, V., & Rega, G. (2018). Local versus global dynamics and control of an AFM model in a safety perspective. In S. Lenci & G. Rega (Eds.), Global nonlinear dynamics for engineering design and system safety (Vol. 588, pp. 229–286). CISM Courses and Lectures. Cham: Springer. Settimi, V., & Rega, G. (2018). Local versus global dynamics and control of an AFM model in a safety perspective. In S. Lenci & G. Rega (Eds.), Global nonlinear dynamics for engineering design and system safety (Vol. 588, pp. 229–286). CISM Courses and Lectures. Cham: Springer.
go back to reference Silva, F. M. A., & Gonçalves, P. B. (2015). The influence of uncertainties and random noise on the dynamic integrity analysis of a system liable to unstable buckling. Nonlinear Dynamics, 81(1–2), 707–724.CrossRef Silva, F. M. A., & Gonçalves, P. B. (2015). The influence of uncertainties and random noise on the dynamic integrity analysis of a system liable to unstable buckling. Nonlinear Dynamics, 81(1–2), 707–724.CrossRef
go back to reference Silva, F. M. A., Gonçalves, P. B., & Del Prado, Z. J. G. N. (2013). Influence of physical and geometrical system parameters uncertainties on the nonlinear oscillations of cylindrical shells. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 34, 622–632. Silva, F. M. A., Gonçalves, P. B., & Del Prado, Z. J. G. N. (2013). Influence of physical and geometrical system parameters uncertainties on the nonlinear oscillations of cylindrical shells. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 34, 622–632.
go back to reference Soliman, M. S., & Gonçalves, P. B. (2003). Chaotic behavior resulting in transient and steady state instabilities of pressure-loaded shallow spherical shells. Journal of Sound and Vibration, 259(3), 497–512.CrossRef Soliman, M. S., & Gonçalves, P. B. (2003). Chaotic behavior resulting in transient and steady state instabilities of pressure-loaded shallow spherical shells. Journal of Sound and Vibration, 259(3), 497–512.CrossRef
go back to reference Soliman, M. S., & Thompson, J. M. T. (1989). Integrity measures quantifying the erosion of smooth and fractal basins of attraction. Journal of Sound and Vibration, 135, 453–475.MathSciNetCrossRef Soliman, M. S., & Thompson, J. M. T. (1989). Integrity measures quantifying the erosion of smooth and fractal basins of attraction. Journal of Sound and Vibration, 135, 453–475.MathSciNetCrossRef
go back to reference Soliman, M. S., & Thompson, J. M. T. (1990). Stochastic penetration of smooth and fractal basin boundaries under noise excitation. Dynamics and Stability of Systems, 5(4), 281–298.MathSciNetCrossRef Soliman, M. S., & Thompson, J. M. T. (1990). Stochastic penetration of smooth and fractal basin boundaries under noise excitation. Dynamics and Stability of Systems, 5(4), 281–298.MathSciNetCrossRef
go back to reference Soliman, M. S., & Thompson, J. M. T. (1991). Transient and steady state analysis of capsize phenomena. Applied Ocean Research, 13(2), 82–92.CrossRef Soliman, M. S., & Thompson, J. M. T. (1991). Transient and steady state analysis of capsize phenomena. Applied Ocean Research, 13(2), 82–92.CrossRef
go back to reference Soliman, M. S., & Thompson, J. M. T. (1992). Global dynamics underlying sharp basin erosion in nonlinear driven oscillators. Physical Review A, 45(6), 3425–3431.CrossRef Soliman, M. S., & Thompson, J. M. T. (1992). Global dynamics underlying sharp basin erosion in nonlinear driven oscillators. Physical Review A, 45(6), 3425–3431.CrossRef
go back to reference Sun, J. Q. (1994). Effect of small random disturbance on the ‘Protection Thickness’ of attractors of nonlinear dynamic systems. In J. M. T. Thompson & S. R. Bishop (Eds.), Nonlinearity and chaos in engineering dynamics (pp. 435–437). Chichester: Wiley. Sun, J. Q. (1994). Effect of small random disturbance on the ‘Protection Thickness’ of attractors of nonlinear dynamic systems. In J. M. T. Thompson & S. R. Bishop (Eds.), Nonlinearity and chaos in engineering dynamics (pp. 435–437). Chichester: Wiley.
go back to reference Sun, J. Q. (2013). Control of nonlinear dynamic systems with the cell mapping method. In O. Schütze, C. A. Coello Coello, A.-A. Tantar, E. Tantar, P. Bouvry, & P. Del Moral (Eds.), EVOLVE—A bridge between probability, set oriented numerics, and evolutionary computation II. Advances in intelligent systems and computing (pp. 3–18). Berlin, Heidelberg: Springer. Sun, J. Q. (2013). Control of nonlinear dynamic systems with the cell mapping method. In O. Schütze, C. A. Coello Coello, A.-A. Tantar, E. Tantar, P. Bouvry, & P. Del Moral (Eds.), EVOLVE—A bridge between probability, set oriented numerics, and evolutionary computation II. Advances in intelligent systems and computing (pp. 3–18). Berlin, Heidelberg: Springer.
go back to reference Xiong, F. R., Han, Q., Hong, L., & Sun, J. Q. (2018). Global analysis of nonlinear dynamical systems. In S. Lenci & G. Rega (Eds.), Global nonlinear dynamics for engineering design and system safety (Vol. 588, pp. 287–318). CISM Courses and Lectures. Cham: Springer. Xiong, F. R., Han, Q., Hong, L., & Sun, J. Q. (2018). Global analysis of nonlinear dynamical systems. In S. Lenci & G. Rega (Eds.), Global nonlinear dynamics for engineering design and system safety (Vol. 588, pp. 287–318). CISM Courses and Lectures. Cham: Springer.
go back to reference Sun, J. Q., & Hsu, C. S. (1991). Effects of small random uncertainties on the non-linear systems studied by the generalized cell mapping methods. Journal of Sound and Vibration, 147(2), 185–201.MathSciNetCrossRef Sun, J. Q., & Hsu, C. S. (1991). Effects of small random uncertainties on the non-linear systems studied by the generalized cell mapping methods. Journal of Sound and Vibration, 147(2), 185–201.MathSciNetCrossRef
go back to reference Szemplińska-Stupnicka, W. (1995). The analytical predictive criteria for chaos and escape in nonlinear oscillators: A survey. Nonlinear Dynamics, 7(2), 129–147.MathSciNetCrossRef Szemplińska-Stupnicka, W. (1995). The analytical predictive criteria for chaos and escape in nonlinear oscillators: A survey. Nonlinear Dynamics, 7(2), 129–147.MathSciNetCrossRef
go back to reference Szemplińska-Stupnicka, W., & Rudowski, J. (1993). Steady state in the twin-well potential oscillator: Computer simulations and approximate analytical studies. Chaos, 3, 375–385.CrossRef Szemplińska-Stupnicka, W., & Rudowski, J. (1993). Steady state in the twin-well potential oscillator: Computer simulations and approximate analytical studies. Chaos, 3, 375–385.CrossRef
go back to reference Szemplińska-Stupnicka, W., Tyrkiel, E., & Zubrzycki, A. (2000). The global bifurcations that lead to transient tumbling chaos in a parametrically driven pendulum. International Journal of Bifurcation and Chaos, 10, 2161–2175.MathSciNetMATH Szemplińska-Stupnicka, W., Tyrkiel, E., & Zubrzycki, A. (2000). The global bifurcations that lead to transient tumbling chaos in a parametrically driven pendulum. International Journal of Bifurcation and Chaos, 10, 2161–2175.MathSciNetMATH
go back to reference Thom, R. (1972). Structural stability and morphogenesis. Massachusetts: W.A. Benjamin Inc. Thom, R. (1972). Structural stability and morphogenesis. Massachusetts: W.A. Benjamin Inc.
go back to reference Thompson, J. M. T. (1982). Instability and catastrophe in science and engineering. Wiley. Thompson, J. M. T. (1982). Instability and catastrophe in science and engineering. Wiley.
go back to reference Thompson, J. M. T. (1989). Chaotic phenomena triggering the escape from a potential well. Proceedings of the Royal Society of London A, 421, 195–225.MathSciNetCrossRef Thompson, J. M. T. (1989). Chaotic phenomena triggering the escape from a potential well. Proceedings of the Royal Society of London A, 421, 195–225.MathSciNetCrossRef
go back to reference Thompson, J. M. T. (1997). Designing against capsize in beam seas: Recent advances and new insights. Applied Mechanics Reviews, 50(5), 307–325.CrossRef Thompson, J. M. T. (1997). Designing against capsize in beam seas: Recent advances and new insights. Applied Mechanics Reviews, 50(5), 307–325.CrossRef
go back to reference Thompson, J. M. T. (2018). Dynamical integrity: Three decades of progress from macro to nano mechanics. In S. Lenci & G. Rega (Eds.), Global nonlinear dynamics for engineering design and system safety (Vol. 588, pp. 1–26). CISM Courses and Lectures. Cham: Springer. Thompson, J. M. T. (2018). Dynamical integrity: Three decades of progress from macro to nano mechanics. In S. Lenci & G. Rega (Eds.), Global nonlinear dynamics for engineering design and system safety (Vol. 588, pp. 1–26). CISM Courses and Lectures. Cham: Springer.
go back to reference Thompson, J. M. T., & Hunt, G. W. (1973). A general theory of elastic stability. London: Wiley.MATH Thompson, J. M. T., & Hunt, G. W. (1973). A general theory of elastic stability. London: Wiley.MATH
go back to reference Thompson, J. M. T., Rainey, R. C. T., & Soliman, M. S. (1990). Ship stability criteria based on chaotic transients from incursive fractals. Philosophical Transactions of the Royal Society of London A, 332(1624), 149–167.MathSciNetCrossRef Thompson, J. M. T., Rainey, R. C. T., & Soliman, M. S. (1990). Ship stability criteria based on chaotic transients from incursive fractals. Philosophical Transactions of the Royal Society of London A, 332(1624), 149–167.MathSciNetCrossRef
go back to reference Thompson, J. M. T., & Soliman, M. S. (1990). Fractal control boundaries of driven oscillators and their relevance to safe engineering design. Proceedings of the Royal Society of London A, 428(1874), 1–13.CrossRef Thompson, J. M. T., & Soliman, M. S. (1990). Fractal control boundaries of driven oscillators and their relevance to safe engineering design. Proceedings of the Royal Society of London A, 428(1874), 1–13.CrossRef
go back to reference Thompson, J. M. T., & Stewart, H. B. (1986). Nonlinear dynamics and chaos. Chichester: Wiley (second extended edition, 2002). Thompson, J. M. T., & Stewart, H. B. (1986). Nonlinear dynamics and chaos. Chichester: Wiley (second extended edition, 2002).
go back to reference Thompson, J. M. T., & Ueda, Y. (1989). Basin boundary metamorphoses in the canonical escape equation. Dynamics and Stability of Systems, 4(3–4), 285–294.MathSciNetCrossRef Thompson, J. M. T., & Ueda, Y. (1989). Basin boundary metamorphoses in the canonical escape equation. Dynamics and Stability of Systems, 4(3–4), 285–294.MathSciNetCrossRef
go back to reference Troger, H., & Steindl, A. (1991). Nonlinear stability and bifurcation theory. Wien: Springer.CrossRef Troger, H., & Steindl, A. (1991). Nonlinear stability and bifurcation theory. Wien: Springer.CrossRef
go back to reference van Campen, D. H., van de Vorst, E. L. B., van der Spek, J. A. W., & de Kraker, A. (1995). Dynamics of a multi-DOF beam system with discontinuous support. Nonlinear Dynamics, 8(4), 453–466.CrossRef van Campen, D. H., van de Vorst, E. L. B., van der Spek, J. A. W., & de Kraker, A. (1995). Dynamics of a multi-DOF beam system with discontinuous support. Nonlinear Dynamics, 8(4), 453–466.CrossRef
go back to reference van der Heijden, A. M. A. (ed.). (2009). W. T. Koiter’s elastic stability of solids and structures. Cambridge University Press. van der Heijden, A. M. A. (ed.). (2009). W. T. Koiter’s elastic stability of solids and structures. Cambridge University Press.
go back to reference Wiercigroch, M. (2010). A new concept for energy extraction from waves via parametric pendulor. UK Patent Application. Wiercigroch, M. (2010). A new concept for energy extraction from waves via parametric pendulor. UK Patent Application.
go back to reference Wiercigroch, M., & Pavlovskaia, E. (2008). Non-linear dynamics of engineering systems. International Journal of Non-Linear Mechanics, 43(6), 459–461.CrossRef Wiercigroch, M., & Pavlovskaia, E. (2008). Non-linear dynamics of engineering systems. International Journal of Non-Linear Mechanics, 43(6), 459–461.CrossRef
go back to reference Wiercigroch, M., & Rega, G. (2013). Introduction to NDATED. In M. Wiercigroch & G. Rega (Eds.), IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design (Vol. 32, pp. v–viii). IUTAM Bookseries. Springer. Wiercigroch, M., & Rega, G. (2013). Introduction to NDATED. In M. Wiercigroch & G. Rega (Eds.), IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design (Vol. 32, pp. v–viii). IUTAM Bookseries. Springer.
go back to reference Wiggins, S. (1990). Introduction to applied nonlinear dynamical systems and chaos. New York, Heidelberg, Berlin: Springer.CrossRef Wiggins, S. (1990). Introduction to applied nonlinear dynamical systems and chaos. New York, Heidelberg, Berlin: Springer.CrossRef
go back to reference Winkler, T., Meguro, K., & Yamazaki, F. (1995). Response of rigid body assemblies to dynamic excitation. Earthquake Engineering and Structural Dynamics, 24, 1389–1408.CrossRef Winkler, T., Meguro, K., & Yamazaki, F. (1995). Response of rigid body assemblies to dynamic excitation. Earthquake Engineering and Structural Dynamics, 24, 1389–1408.CrossRef
go back to reference Xu, T., Ruzziconi, L., & Younis, M. I. (2017). Global investigation of the nonlinear dynamics of carbon nanotubes. Acta Mechanica, 228(3), 1029–1043.MathSciNetCrossRef Xu, T., Ruzziconi, L., & Younis, M. I. (2017). Global investigation of the nonlinear dynamics of carbon nanotubes. Acta Mechanica, 228(3), 1029–1043.MathSciNetCrossRef
go back to reference Xu, X., Pavlovskaia, E., Wiercigroch, M., Romeo, R., & Lenci, S. (2007). Dynamic interactions between parametric pendulum and electrodynamical shaker. ZAMM—Journal of Applied Mathematics and Mechanics, 87, 172–186.MathSciNetCrossRef Xu, X., Pavlovskaia, E., Wiercigroch, M., Romeo, R., & Lenci, S. (2007). Dynamic interactions between parametric pendulum and electrodynamical shaker. ZAMM—Journal of Applied Mathematics and Mechanics, 87, 172–186.MathSciNetCrossRef
go back to reference Xu, X., & Wiercigroch, M. (2007). Approximate analytical solutions for oscillatory and rotational motion of a parametric pendulum. Nonlinear Dynamics, 47, 311–320.MathSciNetCrossRef Xu, X., & Wiercigroch, M. (2007). Approximate analytical solutions for oscillatory and rotational motion of a parametric pendulum. Nonlinear Dynamics, 47, 311–320.MathSciNetCrossRef
go back to reference Xu, X., Wiercigroch, M., & Cartmell, M. P. (2005). Rotating orbits of a parametrically excited pendulum. Chaos, Solitons & Fractals, 23, 1537–1548.CrossRef Xu, X., Wiercigroch, M., & Cartmell, M. P. (2005). Rotating orbits of a parametrically excited pendulum. Chaos, Solitons & Fractals, 23, 1537–1548.CrossRef
go back to reference Younis, M. I. (2011). MEMS linear and nonlinear statics and dynamics. New York: Springer.CrossRef Younis, M. I. (2011). MEMS linear and nonlinear statics and dynamics. New York: Springer.CrossRef
go back to reference Zeeman, E. C. (1977). Catastrophe theory: Selected papers, 1972–1977. Oxford, England: Addison-Wesley.MATH Zeeman, E. C. (1977). Catastrophe theory: Selected papers, 1972–1977. Oxford, England: Addison-Wesley.MATH
Metadata
Title
Dynamical Integrity: A Novel Paradigm for Evaluating Load Carrying Capacity
Authors
Giuseppe Rega
Stefano Lenci
Laura Ruzziconi
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-99710-0_2

Premium Partners