Skip to main content
Top

2012 | OriginalPaper | Chapter

Dynamics, Control, and Stabilization of Turning Flight in Fruit Flies

Authors : Leif Ristroph, Attila J. Bergou, Gordon J. Berman, John Guckenheimer, Z. Jane Wang, Itai Cohen

Published in: Natural Locomotion in Fluids and on Surfaces

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Complex behaviors of flying insects require interactions among sensory-neural systems, wing actuation biomechanics, and flapping-wing aerodynamics. Here, we review our recent progress in understanding these layers for maneuvering and stabilization flight of fruit flies. Our approach combines kinematic data from flying insects and aerodynamic simulations to distill reduced-order mathematical models of flight dynamics, wing actuation mechanisms, and control and stabilization strategies. Our central findings include: (1) During in-flight turns, fruit flies generate torque by subtly modulating wing angle of attack, in effect paddling to push off the air; (2) These motions are generated by biasing the orientation of a biomechanical brake that tends to resist rotation of the wing; (3) A simple and fast sensory-neural feedback scheme determines this wing actuation and thus the paddling motions needed for stabilization of flight heading against external disturbances. These studies illustrate a powerful approach for studying the integration of sensory-neural feedback, actuation, and aerodynamic strategies used by flying insects.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
[1].
go back to reference Ristroph L, Berman GJ, Bergou AJ, Wang ZJ, Cohen I (2009) Automated hull reconstruction motion tracking (HRMT) applied to sideways maneuvers of free-flying insects. J Exp Biol 212:1324–1335CrossRef Ristroph L, Berman GJ, Bergou AJ, Wang ZJ, Cohen I (2009) Automated hull reconstruction motion tracking (HRMT) applied to sideways maneuvers of free-flying insects. J Exp Biol 212:1324–1335CrossRef
[2].
go back to reference Ristroph L, Bergou AJ, Ristroph G, Coumes K, Berman GJ, Guckenheimer J, Wang ZJ, Cohen I (2010) Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles. PNAS 107:4820–4824CrossRef Ristroph L, Bergou AJ, Ristroph G, Coumes K, Berman GJ, Guckenheimer J, Wang ZJ, Cohen I (2010) Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles. PNAS 107:4820–4824CrossRef
[3].
go back to reference Bergou AJ, Ristroph L, Guckenheimer J, Wang ZJ, Cohen I (2010) Fruit flies modulate passive wing pitching to generate in-flight turns. Phys Rev Lett 104:148101CrossRef Bergou AJ, Ristroph L, Guckenheimer J, Wang ZJ, Cohen I (2010) Fruit flies modulate passive wing pitching to generate in-flight turns. Phys Rev Lett 104:148101CrossRef
[4].
go back to reference Collett TS, Land MF (1975) Visual control of flight behavior in the hoverfly, Syritta pipiens L. J Comp Physiol A 99:1–66CrossRef Collett TS, Land MF (1975) Visual control of flight behavior in the hoverfly, Syritta pipiens L. J Comp Physiol A 99:1–66CrossRef
[5].
go back to reference Reichardt W, Poggio T (1976) Visual control of orientation behavior in the fly. Q Rev Biophys 9:311–375CrossRef Reichardt W, Poggio T (1976) Visual control of orientation behavior in the fly. Q Rev Biophys 9:311–375CrossRef
[6].
go back to reference Mayer M, Vogtmann K, Bausenwein B, Wolf R, Heisenberg M (1988) Flight control during ‘free yaw turns’ in Drosophila melanogaster. J Comp Physiol A 163:389–399CrossRef Mayer M, Vogtmann K, Bausenwein B, Wolf R, Heisenberg M (1988) Flight control during ‘free yaw turns’ in Drosophila melanogaster. J Comp Physiol A 163:389–399CrossRef
[7].
go back to reference Heisenberg M, Wolf R (1993) The sensory-motor link in motion-dependent flight control of flies. In: Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, pp 265–283 Heisenberg M, Wolf R (1993) The sensory-motor link in motion-dependent flight control of flies. In: Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, pp 265–283
[8].
go back to reference Heide G, Goetz KG (1996) Optomotor control of course and altitude in Drosophila is correlated with distinct activities of at least three pairs of steering muscles. J Exp Biol 199:1711–1726 Heide G, Goetz KG (1996) Optomotor control of course and altitude in Drosophila is correlated with distinct activities of at least three pairs of steering muscles. J Exp Biol 199:1711–1726
[9].
go back to reference Fry SN, Sayaman R, Dickinson MH (2003) The aerodynamics of free-flight maneuvers of Drosophila. Science 300:495–498CrossRef Fry SN, Sayaman R, Dickinson MH (2003) The aerodynamics of free-flight maneuvers of Drosophila. Science 300:495–498CrossRef
[10].
go back to reference Dickinson MH (2005) The initiation and control of rapid flight maneuvers in fruit flies. Integr Comp Biol 45:274–281CrossRef Dickinson MH (2005) The initiation and control of rapid flight maneuvers in fruit flies. Integr Comp Biol 45:274–281CrossRef
[11].
go back to reference Bender JA, Dickinson MH (2006) Visual stimulation of saccades in magnetically tethered Drosophila. J Exp Biol 209:3170–3182CrossRef Bender JA, Dickinson MH (2006) Visual stimulation of saccades in magnetically tethered Drosophila. J Exp Biol 209:3170–3182CrossRef
[12].
go back to reference Hedrick TL, Cheng B, Deng X (2009) Wingbeat time and the scaling of passive rotational damping in flapping flight. Science 324:252–255CrossRef Hedrick TL, Cheng B, Deng X (2009) Wingbeat time and the scaling of passive rotational damping in flapping flight. Science 324:252–255CrossRef
[13].
go back to reference Tammero LF, Dickinson MH (2002) The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. J Exp Biol 205:327–343 Tammero LF, Dickinson MH (2002) The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. J Exp Biol 205:327–343
[14].
go back to reference Dickinson MH, Tu MS (1997) The function of Dipteran flight muscle. Comp Biochem Physiol A 116:223–238CrossRef Dickinson MH, Tu MS (1997) The function of Dipteran flight muscle. Comp Biochem Physiol A 116:223–238CrossRef
[15].
go back to reference Reiser MB, Dickinson MH (2008) A modular display system for insect behavioral response. J Neurosci Methods 167:127–139CrossRef Reiser MB, Dickinson MH (2008) A modular display system for insect behavioral response. J Neurosci Methods 167:127–139CrossRef
[16].
go back to reference Sane SP (2003) The aerodynamics of insect flight. J Exp Biol 206:4191–4208CrossRef Sane SP (2003) The aerodynamics of insect flight. J Exp Biol 206:4191–4208CrossRef
[17].
go back to reference Lehmann F-O (2004) The mechanisms of lift enhancement in insect flight. Naturwissenschaften 91:101–122CrossRef Lehmann F-O (2004) The mechanisms of lift enhancement in insect flight. Naturwissenschaften 91:101–122CrossRef
[18].
[19].
go back to reference Jensen M (1956) Biology and physics of locust flight. III. The aerodynamics of locust flight. Philos Trans R Soc Ser B 239:511–552 Jensen M (1956) Biology and physics of locust flight. III. The aerodynamics of locust flight. Philos Trans R Soc Ser B 239:511–552
[20].
go back to reference Ellington CP (1984) The aerodynamics of hovering insect flight. I. The quasi-steady analysis. Philos Trans R Soc Ser B 305:1–15 Ellington CP (1984) The aerodynamics of hovering insect flight. I. The quasi-steady analysis. Philos Trans R Soc Ser B 305:1–15
[21].
go back to reference Bennett L (1970) Insect flight: lift and the rate of change of incidence. Science 167:177–179CrossRef Bennett L (1970) Insect flight: lift and the rate of change of incidence. Science 167:177–179CrossRef
[22].
go back to reference Dickinson MH, Lehmann F-O, Goetz KG (1993) The active control of wing rotation by Drosophila. J Exp Biol 182:173–189 Dickinson MH, Lehmann F-O, Goetz KG (1993) The active control of wing rotation by Drosophila. J Exp Biol 182:173–189
[23].
go back to reference Ellington CP, van den Berg C, Willmott AP, Thomas ALR (1996) Leading-edge vortices in insect flight. Nature 384:626–630CrossRef Ellington CP, van den Berg C, Willmott AP, Thomas ALR (1996) Leading-edge vortices in insect flight. Nature 384:626–630CrossRef
[24].
go back to reference Dickinson MH, Lehmann F-O, Sane S (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960CrossRef Dickinson MH, Lehmann F-O, Sane S (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960CrossRef
[25].
go back to reference Lentink D, Dickinson MH (2009) Rotational accelerations stabilize leading edge vortices on revolving fly wings. J Exp Biol 212:2705–2719CrossRef Lentink D, Dickinson MH (2009) Rotational accelerations stabilize leading edge vortices on revolving fly wings. J Exp Biol 212:2705–2719CrossRef
[26].
go back to reference Dickson WB, Polidoro P, Tanner MM, Dickinson MH (2010) A linear systems analysis of the yaw dynamics of a dynamically scaled insect model. J Exp Biol 213:3047–3061CrossRef Dickson WB, Polidoro P, Tanner MM, Dickinson MH (2010) A linear systems analysis of the yaw dynamics of a dynamically scaled insect model. J Exp Biol 213:3047–3061CrossRef
[27].
go back to reference Sun M, Tang J (2002) Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J Exp Biol 205:55–70 Sun M, Tang J (2002) Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J Exp Biol 205:55–70
[28].
go back to reference Ramamurti R, Sandberg WC (2002) A three-dimensional computational study of the aerodynamic mechanisms of insect flight. J Exp Biol 205:1507–1518 Ramamurti R, Sandberg WC (2002) A three-dimensional computational study of the aerodynamic mechanisms of insect flight. J Exp Biol 205:1507–1518
[29].
go back to reference Wang ZJ, Birch J, Dickinson MH (2004) Unsteady forces in hovering flight: computation vs experiments. J Exp Biol 207:449CrossRef Wang ZJ, Birch J, Dickinson MH (2004) Unsteady forces in hovering flight: computation vs experiments. J Exp Biol 207:449CrossRef
[30].
go back to reference Pesavento U, Wang ZJ (2009) Flapping wing flight can save aerodynamic power compared to steady flight. Phys Rev Lett 103:118102CrossRef Pesavento U, Wang ZJ (2009) Flapping wing flight can save aerodynamic power compared to steady flight. Phys Rev Lett 103:118102CrossRef
[31].
go back to reference Young J, Walker SM, Bomphrey RJ, Taylor GK, Thomas ALR (2009) Details of wing design and deformation enhance aerodynamic function and flight efficiency. Science 325:1549–1552CrossRef Young J, Walker SM, Bomphrey RJ, Taylor GK, Thomas ALR (2009) Details of wing design and deformation enhance aerodynamic function and flight efficiency. Science 325:1549–1552CrossRef
[32].
go back to reference Pesavento U, Wang ZJ (2004) Falling paper: Navier-stokes solutions, model of fluid forces, and center of mass elevation. Phys Rev Lett 93:144501CrossRef Pesavento U, Wang ZJ (2004) Falling paper: Navier-stokes solutions, model of fluid forces, and center of mass elevation. Phys Rev Lett 93:144501CrossRef
[33].
[34].
go back to reference Sane SP, Dickinson MH (2002) The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J Exp Biol 205:1087–1096 Sane SP, Dickinson MH (2002) The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J Exp Biol 205:1087–1096
[35].
go back to reference Featherstone R, Orin D (2000) Robot dynamics: equations and algorithms. In: IEEE international conference robotics & automation, San Francisco, pp 826–834 Featherstone R, Orin D (2000) Robot dynamics: equations and algorithms. In: IEEE international conference robotics & automation, San Francisco, pp 826–834
[36].
go back to reference Deng X, Schenato L, Wu WC, Sastry SS (2006) Flapping flight for biomimetic insects: part I – system modeling. IEEE Trans Robot 22:776–788CrossRef Deng X, Schenato L, Wu WC, Sastry SS (2006) Flapping flight for biomimetic insects: part I – system modeling. IEEE Trans Robot 22:776–788CrossRef
[37].
go back to reference Deng X, Schenato L, Sastry SS (2006) Flapping flight for biomimetic insects: part II – flight control design. IEEE Trans Robot 22:789–803CrossRef Deng X, Schenato L, Sastry SS (2006) Flapping flight for biomimetic insects: part II – flight control design. IEEE Trans Robot 22:789–803CrossRef
[38].
go back to reference Hedrick TL, Daniel TL (2006) Flight control in the hawkmoth Manduca sexta: the inverse problem of hovering. J Exp Biol 209:3114–3130CrossRef Hedrick TL, Daniel TL (2006) Flight control in the hawkmoth Manduca sexta: the inverse problem of hovering. J Exp Biol 209:3114–3130CrossRef
[39].
go back to reference Dickson WB, Straw AD, Dickinson MH (2008) Integrative model of Drosophila flight. AIAA J 46:2150–2164CrossRef Dickson WB, Straw AD, Dickinson MH (2008) Integrative model of Drosophila flight. AIAA J 46:2150–2164CrossRef
[40].
go back to reference Faruque I, Humbert JS (2010) Dipteran insect flight dynamics. Part 1: longitudinal motion about hover. J Theor Biol 264:538–552CrossRef Faruque I, Humbert JS (2010) Dipteran insect flight dynamics. Part 1: longitudinal motion about hover. J Theor Biol 264:538–552CrossRef
[41].
go back to reference Faruque I, Humbert JS (2010) Dipteran insect flight dynamics. Part 2: lateral-directional motion about hover. J Theor Biol 265:306–313CrossRef Faruque I, Humbert JS (2010) Dipteran insect flight dynamics. Part 2: lateral-directional motion about hover. J Theor Biol 265:306–313CrossRef
[42].
go back to reference Sun M, Wu JH (2003) Aerodynamic force generation and power requirements in forwar flight in a fruit fly with modeled wing motion. J Exp Biol 206:3065–3083CrossRef Sun M, Wu JH (2003) Aerodynamic force generation and power requirements in forwar flight in a fruit fly with modeled wing motion. J Exp Biol 206:3065–3083CrossRef
[43].
go back to reference Gao N, Aono H, Liu H (2011) Perturbation analysis of 6DoF flight dynamics and passive dynamic stability of hovering fruit fly Drosophila melanogaster. J Theor Biol 270:98–111CrossRef Gao N, Aono H, Liu H (2011) Perturbation analysis of 6DoF flight dynamics and passive dynamic stability of hovering fruit fly Drosophila melanogaster. J Theor Biol 270:98–111CrossRef
[44].
go back to reference Hesselberg T, Lehmann F-O (2007) Turning behavior depends on frictional damping in the fruit fly Drosophila. J Exp Biol 210:4319–4334CrossRef Hesselberg T, Lehmann F-O (2007) Turning behavior depends on frictional damping in the fruit fly Drosophila. J Exp Biol 210:4319–4334CrossRef
[45].
go back to reference Dickinson MH, Lehmann F-O, Sane S (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960CrossRef Dickinson MH, Lehmann F-O, Sane S (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960CrossRef
[46].
go back to reference Bechhoefer J (2005) Feedback for physicists: a tutorial essay on control. Rev Mod Phys 77:783–836CrossRef Bechhoefer J (2005) Feedback for physicists: a tutorial essay on control. Rev Mod Phys 77:783–836CrossRef
[47].
go back to reference Pringle JWS (1948) The gyroscopic mechanism of the halteres of Diptera. Philos Trans R Soc Lond B 233:347–384CrossRef Pringle JWS (1948) The gyroscopic mechanism of the halteres of Diptera. Philos Trans R Soc Lond B 233:347–384CrossRef
[48].
go back to reference Dickinson MH (1999) Haltere-mediated equilibrium reflexes of the fruit fly, Drosophila melanogaster. Philos Trans R Soc Lond B 354:903–916CrossRef Dickinson MH (1999) Haltere-mediated equilibrium reflexes of the fruit fly, Drosophila melanogaster. Philos Trans R Soc Lond B 354:903–916CrossRef
[49].
go back to reference Heide G (1983) Neural mechanisms of flight control in Diptera. In: BIONA report 2, Fischer, Stuttgart, pp 35–52 Heide G (1983) Neural mechanisms of flight control in Diptera. In: BIONA report 2, Fischer, Stuttgart, pp 35–52
[50].
go back to reference Taylor GK, Krapp HG (2007) Sensory systems and flight stability: what do insects measure and why? Adv Insect Physiol 34:231–316CrossRef Taylor GK, Krapp HG (2007) Sensory systems and flight stability: what do insects measure and why? Adv Insect Physiol 34:231–316CrossRef
Metadata
Title
Dynamics, Control, and Stabilization of Turning Flight in Fruit Flies
Authors
Leif Ristroph
Attila J. Bergou
Gordon J. Berman
John Guckenheimer
Z. Jane Wang
Itai Cohen
Copyright Year
2012
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-3997-4_6

Premium Partner