Skip to main content
Top
Published in:

09-01-2021

E-Bayesian and Hierarchical Bayesian Estimations for the Inverse Weibull Distribution

Authors: Abdulkareem M. Basheer, H. M. Okasha, A. H. El-Baz, A. M. K. Tarabia

Published in: Annals of Data Science | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper new formulas for E-Bayesian and hierarchical Bayesian estimations of the parameter and reliability of the inverse Weibull distribution are obtained in closed forms. To illustrate the applicability of the obtained results, simulated and real data are used which illustrate that E-Bayesian estimate gives superior performance much better than hierarchical Bayesian for the estimate of the parameter of the inverse Weibull distribution.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shi Y, Tian YJ, Kou G, Peng Y, Li JP (2011) Optimization based data mining: theory and applications. Springer, BerlinCrossRef Shi Y, Tian YJ, Kou G, Peng Y, Li JP (2011) Optimization based data mining: theory and applications. Springer, BerlinCrossRef
2.
go back to reference Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York
3.
go back to reference Peck R, Olsen C, Devore JL (2016) Statistics and data analysis. Cengage Learning, Boston Peck R, Olsen C, Devore JL (2016) Statistics and data analysis. Cengage Learning, Boston
4.
go back to reference Calabria R, Pulcini G (1990) On the maximum likelihood and least squares estimation in inverse Weibull distribution. Stat Appl 2:53–66 Calabria R, Pulcini G (1990) On the maximum likelihood and least squares estimation in inverse Weibull distribution. Stat Appl 2:53–66
5.
go back to reference Calabria R, Pulcini G (1994) Bayes 2-sample prediction for the inverse Weibull distribution. Commun Stat Theory Methods 23(6):1811–1824CrossRef Calabria R, Pulcini G (1994) Bayes 2-sample prediction for the inverse Weibull distribution. Commun Stat Theory Methods 23(6):1811–1824CrossRef
6.
go back to reference Johnson NL, Kotz S, Balakrishnan N (1995) Continuous univariate distributions. Wiley, New York Johnson NL, Kotz S, Balakrishnan N (1995) Continuous univariate distributions. Wiley, New York
7.
go back to reference Maswadah M (2003) Conditional confidence interval estimation for the inverse Weibull distribution based on censored generalized order statistics. J Stat Comput Simul 73(12):887–898CrossRef Maswadah M (2003) Conditional confidence interval estimation for the inverse Weibull distribution based on censored generalized order statistics. J Stat Comput Simul 73(12):887–898CrossRef
8.
go back to reference Khan MS, Pasha GR, Pasha AH (2008) Theoretical analysis of inverse Weibull distribution. WSEAS Trans Math 7:30–38 Khan MS, Pasha GR, Pasha AH (2008) Theoretical analysis of inverse Weibull distribution. WSEAS Trans Math 7:30–38
9.
go back to reference Kundu D, Howlader H (2010) Bayesian inference and prediction of the inverse Weibull distribution for type-II censored data. Comput Stat Data Anal 54(6):1547–1558CrossRef Kundu D, Howlader H (2010) Bayesian inference and prediction of the inverse Weibull distribution for type-II censored data. Comput Stat Data Anal 54(6):1547–1558CrossRef
10.
go back to reference Singh SK, Singh U, Kumar D (2013) Bayesian estimation of parameters of inverse Weibull distribution. J Appl Stat 40(7):1597–1607CrossRef Singh SK, Singh U, Kumar D (2013) Bayesian estimation of parameters of inverse Weibull distribution. J Appl Stat 40(7):1597–1607CrossRef
12.
go back to reference Okasha HM, El-Baz AH, Tarabia AMK, Basheer AM (2017) Extended inverse Weibull distribution with reliability application. J Egypt Math Soc 25(3):343–349CrossRef Okasha HM, El-Baz AH, Tarabia AMK, Basheer AM (2017) Extended inverse Weibull distribution with reliability application. J Egypt Math Soc 25(3):343–349CrossRef
13.
go back to reference Okasha HM, El-Baz AH, Basheer AM (2020) On Marshall–Olkin extended inverse Weibull distribution: properties and estimation using type-II censoring data. J Stat Appl Probab Lett 7(1):9–21CrossRef Okasha HM, El-Baz AH, Basheer AM (2020) On Marshall–Olkin extended inverse Weibull distribution: properties and estimation using type-II censoring data. J Stat Appl Probab Lett 7(1):9–21CrossRef
16.
go back to reference Para BA, Jan TR (2019) On three parameter discrete generalized inverse Weibull distribution: properties and applications. Ann Data Sci 6:549–570CrossRef Para BA, Jan TR (2019) On three parameter discrete generalized inverse Weibull distribution: properties and applications. Ann Data Sci 6:549–570CrossRef
17.
go back to reference Han M (2017) The E-Bayesian and hierarchical Bayesian estimations of Pareto distribution parameter under different loss functions. J Stat Comput Simul 87(3):577–593CrossRef Han M (2017) The E-Bayesian and hierarchical Bayesian estimations of Pareto distribution parameter under different loss functions. J Stat Comput Simul 87(3):577–593CrossRef
18.
go back to reference Calabria R, Pulcini G (1996) Point estimation under asymmetric loss functions for left-truncated exponential samples. Commun Stat Theory Methods 25(3):585–600CrossRef Calabria R, Pulcini G (1996) Point estimation under asymmetric loss functions for left-truncated exponential samples. Commun Stat Theory Methods 25(3):585–600CrossRef
19.
go back to reference Han M (1997) The structure of hierarchical prior distribution and its applications. Chin Oper Res Manag Sci 6(3):31–40 Han M (1997) The structure of hierarchical prior distribution and its applications. Chin Oper Res Manag Sci 6(3):31–40
20.
go back to reference Han M (2009) E-Bayesian estimation and hierarchical Bayesian estimation of failure rate. Appl Math Model 33:1915–1922CrossRef Han M (2009) E-Bayesian estimation and hierarchical Bayesian estimation of failure rate. Appl Math Model 33:1915–1922CrossRef
21.
go back to reference Han M (2011) E-Bayesian estimation of the reliability derived from binomial distribution. Appl Math Model 35:2419–2424CrossRef Han M (2011) E-Bayesian estimation of the reliability derived from binomial distribution. Appl Math Model 35:2419–2424CrossRef
22.
go back to reference Jaheen ZF, Okasha HM (2011) E-Bayesian estimation for the Burr type XII model based on type-2 censoring. Appl Math Model 35:4730–4737CrossRef Jaheen ZF, Okasha HM (2011) E-Bayesian estimation for the Burr type XII model based on type-2 censoring. Appl Math Model 35:4730–4737CrossRef
23.
go back to reference Okasha HM (2014) E-Bayesian estimation for the Lomax distribution based on type-II censored data. J Egypt Math Soc 22:489–495CrossRef Okasha HM (2014) E-Bayesian estimation for the Lomax distribution based on type-II censored data. J Egypt Math Soc 22:489–495CrossRef
24.
go back to reference Okasha HM, Wang J (2016) E-Bayesian estimation for the geometric model based on record statistics. Appl Math Model 40:658–670CrossRef Okasha HM, Wang J (2016) E-Bayesian estimation for the geometric model based on record statistics. Appl Math Model 40:658–670CrossRef
25.
go back to reference Lindley DV, Smith AF (1972) Bayes estimation for the linear model. J R Stat Soc Ser B 34:1–41 Lindley DV, Smith AF (1972) Bayes estimation for the linear model. J R Stat Soc Ser B 34:1–41
26.
go back to reference Ando T, Zellner A (2010) Hierarchical Bayesian analysis of the seemingly unrelated regression and simultaneous equations models using a combination of direct Monte Carlo and importance sampling techniques. Bayesian Anal 5(1):65–96CrossRef Ando T, Zellner A (2010) Hierarchical Bayesian analysis of the seemingly unrelated regression and simultaneous equations models using a combination of direct Monte Carlo and importance sampling techniques. Bayesian Anal 5(1):65–96CrossRef
27.
go back to reference Aarset MV (1987) How to identify bathtub hazard rate. IEEE Trans Reliab 36:106–108CrossRef Aarset MV (1987) How to identify bathtub hazard rate. IEEE Trans Reliab 36:106–108CrossRef
Metadata
Title
E-Bayesian and Hierarchical Bayesian Estimations for the Inverse Weibull Distribution
Authors
Abdulkareem M. Basheer
H. M. Okasha
A. H. El-Baz
A. M. K. Tarabia
Publication date
09-01-2021
Publisher
Springer Berlin Heidelberg
Published in
Annals of Data Science / Issue 3/2023
Print ISSN: 2198-5804
Electronic ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-020-00320-x

Premium Partner