Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Applicable Algebra in Engineering, Communication and Computing 6/2021

12-02-2020 | Original Paper

EA-inequivalence of bent functions

Author: Samed Bajrić

Published in: Applicable Algebra in Engineering, Communication and Computing | Issue 6/2021

Login to get access
share
SHARE

Abstract

The question of establishing EA-inequivalence among the classes of bent functions remains in general an open problem. The EA-inequivalence is also relevant in classifying bent functions within the same class. This paper is an attempt to investigate these questions for the Maiorana–McFarland (\(\mathcal{M}\)) class and so-called class \(\mathcal{H}\) of bent functions. For cubic bent functions of the form \(Tr_1^t(xy^{2^i+1})\) in \(\mathcal{M}\), the necessary and sufficient conditions related to EA-equivalence are derived. It is also shown that in most of the cases, at least over finite fields of relatively small order, bent functions within \(\mathcal{H}\) are EA-inequivalent.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Literature
1.
go back to reference Carlet, C.: Two new classes of bent functions. In: Advances in Cryptology—Eurocrypt’93. LNCS, vol. 765, pp. 77–101, Springer (1994) Carlet, C.: Two new classes of bent functions. In: Advances in Cryptology—Eurocrypt’93. LNCS, vol. 765, pp. 77–101, Springer (1994)
2.
go back to reference Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P.L. (eds.) Chapter of the Monograph: Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 257–397. Cambridge University Press, Cambridge (2010) Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P.L. (eds.) Chapter of the Monograph: Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 257–397. Cambridge University Press, Cambridge (2010)
3.
go back to reference Carlet, C., Mesnager, S.: On Dillon’s class \(H\) of bent functions, Niho bent functions and o-polynomials. J. Comb. Theory Ser. A 118, 2392–2410 (2011) MathSciNetCrossRef Carlet, C., Mesnager, S.: On Dillon’s class \(H\) of bent functions, Niho bent functions and o-polynomials. J. Comb. Theory Ser. A 118, 2392–2410 (2011) MathSciNetCrossRef
5.
go back to reference Dempwolff, U.: Automorphisms and equivalence of bent functions and of difference sets in elementary abelian \(2\)-groups. Commun. Algebra 34, 1077–1131 (2006) MathSciNetCrossRef Dempwolff, U.: Automorphisms and equivalence of bent functions and of difference sets in elementary abelian \(2\)-groups. Commun. Algebra 34, 1077–1131 (2006) MathSciNetCrossRef
6.
go back to reference Dillon, J.F.: Elementary Hadamard difference sets. In: Proceedings of 6th S. E. Conference of Combinatorics, Graph Theory, and Computing, Utility Mathematics, Winnipeg, pp. 237–249 (1975) Dillon, J.F.: Elementary Hadamard difference sets. In: Proceedings of 6th S. E. Conference of Combinatorics, Graph Theory, and Computing, Utility Mathematics, Winnipeg, pp. 237–249 (1975)
7.
go back to reference Dobbertin, H., Leander, G., Canteaut, A., Carlet, C., Felke, P., Gaborit, P.: Construction of bent functions via Niho power functions. J. Comb. Theory Ser. A 113, 779–798 (2006) MathSciNetCrossRef Dobbertin, H., Leander, G., Canteaut, A., Carlet, C., Felke, P., Gaborit, P.: Construction of bent functions via Niho power functions. J. Comb. Theory Ser. A 113, 779–798 (2006) MathSciNetCrossRef
8.
go back to reference Gangopadhyay, S., Sharma, D., Sarkar, S., Maitra, S.: On Affine (non)Equivalence of Boolean Functions. Computing. LNCS, vol. 85, pp. 37–55. Springer, Berlin (2009) MATH Gangopadhyay, S., Sharma, D., Sarkar, S., Maitra, S.: On Affine (non)Equivalence of Boolean Functions. Computing. LNCS, vol. 85, pp. 37–55. Springer, Berlin (2009) MATH
9.
go back to reference Gangopadhyay, S.: Affine inequivalence of cubic Maiorana–McFarland type bent functions. Discrete Appl. Math. 161, 1141–1146 (2013) MathSciNetCrossRef Gangopadhyay, S.: Affine inequivalence of cubic Maiorana–McFarland type bent functions. Discrete Appl. Math. 161, 1141–1146 (2013) MathSciNetCrossRef
10.
go back to reference Glynn, D.: Two new sequences of ovals in finite Desarguesian planes of even order. Lect. Notes Math. 1036, 217–229 (1983) MathSciNetCrossRef Glynn, D.: Two new sequences of ovals in finite Desarguesian planes of even order. Lect. Notes Math. 1036, 217–229 (1983) MathSciNetCrossRef
11.
go back to reference Hirschfeld, J.W.: Projective Geometry Over Finite Fields. Oxford University, New York (1979) MATH Hirschfeld, J.W.: Projective Geometry Over Finite Fields. Oxford University, New York (1979) MATH
12.
go back to reference Lidl, R., Niederreiter, H., Turnwald, G.: Dickson Polynomials. Longman Scientific and Technical, Harlow, Essex (1993) MATH Lidl, R., Niederreiter, H., Turnwald, G.: Dickson Polynomials. Longman Scientific and Technical, Harlow, Essex (1993) MATH
13.
go back to reference Mannn, B.: Difference sets in elementary Abelian groups. Ill. J. Math. 9, 212–219 (1965) MathSciNet Mannn, B.: Difference sets in elementary Abelian groups. Ill. J. Math. 9, 212–219 (1965) MathSciNet
14.
go back to reference MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977) MATH MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977) MATH
15.
go back to reference Paynenn, S.E.: A new infinite family of generalized quadrangles. Congr. Numer. 49, 115–128 (1985) MathSciNet Paynenn, S.E.: A new infinite family of generalized quadrangles. Congr. Numer. 49, 115–128 (1985) MathSciNet
16.
go back to reference Rothaus, O.S.: On bent functions. J. Comb. Theory Ser. A 20, 300–305 (1976) CrossRef Rothaus, O.S.: On bent functions. J. Comb. Theory Ser. A 20, 300–305 (1976) CrossRef
17.
go back to reference Segre, B.: Ovali e curve \(\sigma \) nei piani di Galois di caratteristica due. Atti dell’ Accad. Naz. Lincei Rend. 32, 785–790 (1962) MathSciNetMATH Segre, B.: Ovali e curve \(\sigma \) nei piani di Galois di caratteristica due. Atti dell’ Accad. Naz. Lincei Rend. 32, 785–790 (1962) MathSciNetMATH
18.
go back to reference Zhang, F., Wei, Y., Pasalic, E.: Constructions of bent–negabent functions and their relation to the completed Maiorana–McFarland class. IEEE Trans. Inf. Theory 61(3), 1496–1506 (2015) MathSciNetCrossRef Zhang, F., Wei, Y., Pasalic, E.: Constructions of bent–negabent functions and their relation to the completed Maiorana–McFarland class. IEEE Trans. Inf. Theory 61(3), 1496–1506 (2015) MathSciNetCrossRef
19.
go back to reference Zhang, F., Pasalic, E., Wei, Y., Cepak, N.: Constructing bent functions outside the Maiorana–McFarland class using a general form of Rothaus. IEEE Trans. Inf. Theory 63(8), 5336–5349 (2017) MathSciNetCrossRef Zhang, F., Pasalic, E., Wei, Y., Cepak, N.: Constructing bent functions outside the Maiorana–McFarland class using a general form of Rothaus. IEEE Trans. Inf. Theory 63(8), 5336–5349 (2017) MathSciNetCrossRef
Metadata
Title
EA-inequivalence of bent functions
Author
Samed Bajrić
Publication date
12-02-2020
Publisher
Springer Berlin Heidelberg
Published in
Applicable Algebra in Engineering, Communication and Computing / Issue 6/2021
Print ISSN: 0938-1279
Electronic ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-020-00418-y

Other articles of this Issue 6/2021

Applicable Algebra in Engineering, Communication and Computing 6/2021 Go to the issue

Premium Partner