Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

Early History of X-Ray Crystallography

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The discovery of the optical microscope played an important role in the scientific revolution of the seventeenth century because it enabled one to directly view objects which were invisible to the naked eye. In 1667 Robert Hooke improved the microscope invented in the previous century in Holland and used it to examine the “microscopic” appearance of snowflakes and plants. Others were able to view for themselves the presence of very small objects and the structures of plants, hair, skin, bones etc. The development of X-ray crystallography at the beginning of the twentieth century by von Laue and the Braggs played an equally important role in the scientific revolution which has shaped our lives. The technique they discovered did not enable scientists to look at the molecular world by looking through a more powerful microscope, but it provided data which when processed enabled scientists to calculate the structures of molecules and appreciate their three-dimensional structures. It provided the zeitgeist of our time that the knowledge of the structure would lead to a more profound understanding of the function and properties of that class of molecule.
This chapter recounts the early history of the development of this important technique and describes how the early technical problems were overcome. It is a fascinating technique because unlike the optical microscope it required the development of a deeper understanding of the way in which the X-rays interact with the electron density in the planes of the crystal and the development of models in order to model this electron density satisfactorily. This chapter traces how these problems were overcome. In the early days, the structures of even simple organic molecules would take a PhD student several months or even years to solve the structure. In time and particularly since the 1950s, the development of more sophisticated equipment and the massive rise in computing power made it possible to solve the three-dimensional structure of an organic molecule within a few minutes with the latest detectors on a laboratory instrument. This successful trajectory has resulted in the ability to study ever more complex molecules and use smaller and smaller crystals. The structures of over a million organic and organometallic compounds are now archived in the most commonly used database, and this wealth of information creates a new set of problems for future generations of scientists.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mingos DMP (ed) (2016) 50 years of structure and bonding – the anniversary volume. Structure and bonding, vol 172, pp 1–374 Mingos DMP (ed) (2016) 50 years of structure and bonding – the anniversary volume. Structure and bonding, vol 172, pp 1–374
2.
go back to reference Stalke D (ed) (2012) Electron density and chemical bonding 1. Structure and bonding, vol 146, pp 1–207 Stalke D (ed) (2012) Electron density and chemical bonding 1. Structure and bonding, vol 146, pp 1–207
3.
go back to reference Stalke D (ed) (2012) Electron density and chemical bonding I1. Structure and bonding, vol 147, pp 1–229 Stalke D (ed) (2012) Electron density and chemical bonding I1. Structure and bonding, vol 147, pp 1–229
4.
go back to reference Anders Lilja A, Liljas L, Ash M-R, Lindblom G, Nissen P, Kjeldgaard M (2017) Textbook of structural biology, vol 8, 2nd edn. World Scientific Publishing, London Anders Lilja A, Liljas L, Ash M-R, Lindblom G, Nissen P, Kjeldgaard M (2017) Textbook of structural biology, vol 8, 2nd edn. World Scientific Publishing, London
5.
go back to reference Giacovazzo C, Manaco HL, Vierbo D, Scordari F, Gilli G, Catti M (1992) Fundamentals of crystallography. International Union of Crystallography, Oxford University Press, Oxford Giacovazzo C, Manaco HL, Vierbo D, Scordari F, Gilli G, Catti M (1992) Fundamentals of crystallography. International Union of Crystallography, Oxford University Press, Oxford
6.
go back to reference Clegg W (1998) Crystal structure determination. Oxford University Primers, Oxford University Press, Oxford Clegg W (1998) Crystal structure determination. Oxford University Primers, Oxford University Press, Oxford
7.
go back to reference Sands DE (1975) Introduction to crystallography. Dover Publications, New York Sands DE (1975) Introduction to crystallography. Dover Publications, New York
8.
go back to reference Rhodes G (2006) Crystallography made crystal clear, 3rd edn. Elsevier, Oxford Rhodes G (2006) Crystallography made crystal clear, 3rd edn. Elsevier, Oxford
9.
go back to reference Stout GH, Jensen LH (1989) X-ray structure determination, 2nd edn. Wiley, New York Stout GH, Jensen LH (1989) X-ray structure determination, 2nd edn. Wiley, New York
10.
go back to reference Luger P (1980) Modern X-ray analysis on single crystals. de Gruyter, Berlin Luger P (1980) Modern X-ray analysis on single crystals. de Gruyter, Berlin
11.
go back to reference Ladd MFC, Palmer RA (1985) Structure determination by X-ray crystallography. Plenum, New York Ladd MFC, Palmer RA (1985) Structure determination by X-ray crystallography. Plenum, New York
12.
go back to reference Glusker JP, Trueblood KN (1985) Crystal structure analysis, 2nd edn. Oxford University Press, Oxford Glusker JP, Trueblood KN (1985) Crystal structure analysis, 2nd edn. Oxford University Press, Oxford
13.
go back to reference Hammond C (1997) The basics of crystallography and diffraction. Oxford University Press, Oxford Hammond C (1997) The basics of crystallography and diffraction. Oxford University Press, Oxford
14.
go back to reference Wolfson MM (1997) An introduction to X-ray crystallography. Cambridge University Press, Cambridge Wolfson MM (1997) An introduction to X-ray crystallography. Cambridge University Press, Cambridge
15.
go back to reference Röntgen WC (1895) Uber eine neu Art von Strahlen. Sitzungber. Der Wurzburger Physik-Medic Gesekksch 137:132–141. Translated into English by Stanton A (1896) On a new kind of rays. Nature 53:274–276 Röntgen WC (1895) Uber eine neu Art von Strahlen. Sitzungber. Der Wurzburger Physik-Medic Gesekksch 137:132–141. Translated into English by Stanton A (1896) On a new kind of rays. Nature 53:274–276
16.
go back to reference Thomson JJ (1897) Cathode rays. Philos Mag 44:293–303 Thomson JJ (1897) Cathode rays. Philos Mag 44:293–303
17.
go back to reference Friedrich W, Knipping P, von Laue M (1912) Sitzungsberichte der Math. Phys. Klasse (Kgl.) Bayerische Akademie der Wissenschaften, pp 303–322 Friedrich W, Knipping P, von Laue M (1912) Sitzungsberichte der Math. Phys. Klasse (Kgl.) Bayerische Akademie der Wissenschaften, pp 303–322
18.
go back to reference von Laue M (1913) Kritische Bemerkeungen zu den Deutungen der Photogramme von Freidrich und Knipping. Phys Z 14:421–423 von Laue M (1913) Kritische Bemerkeungen zu den Deutungen der Photogramme von Freidrich und Knipping. Phys Z 14:421–423
19.
go back to reference Bragg WL (1962) Ewald PP (ed) Fifty years of X-ray diffraction. International Union of Crystallography, Oxford University Press, Oxford, pp 531–539 Bragg WL (1962) Ewald PP (ed) Fifty years of X-ray diffraction. International Union of Crystallography, Oxford University Press, Oxford, pp 531–539
20.
go back to reference Thomas JM, Phillips DC (eds) (1990) Selections and reflections: the legacy of Sir Lawrence Bragg. Science Reviews, London Thomas JM, Phillips DC (eds) (1990) Selections and reflections: the legacy of Sir Lawrence Bragg. Science Reviews, London
21.
go back to reference Authier A (2013) Early days of X-ray crystallography. International Union of Crystallography, Oxford University Press, Oxford Authier A (2013) Early days of X-ray crystallography. International Union of Crystallography, Oxford University Press, Oxford
22.
go back to reference Kemp TJ, Alcock NW (2017) 110 years of X-ray crystallography. Sci Prog 100:25–44PubMed Kemp TJ, Alcock NW (2017) 110 years of X-ray crystallography. Sci Prog 100:25–44PubMed
23.
go back to reference Thomas JM (2012) Centenary – the birth of X-ray crystallography. Nature 491:186–124PubMed Thomas JM (2012) Centenary – the birth of X-ray crystallography. Nature 491:186–124PubMed
24.
go back to reference Thomas JM (2012) WL Bragg – the pioneer of X-ray crystallography and his pervasive influence. Angew Chem Int Ed 51:12946–12958 Thomas JM (2012) WL Bragg – the pioneer of X-ray crystallography and his pervasive influence. Angew Chem Int Ed 51:12946–12958
25.
go back to reference Bijvoet JM, Burgers WG, Hagg G (eds) (1969) Early papers on diffraction of X-rays by crystals I. International Union of Crystallography, A. Oosthoek’s Uitgevrsmaatschappij, Utrecht Bijvoet JM, Burgers WG, Hagg G (eds) (1969) Early papers on diffraction of X-rays by crystals I. International Union of Crystallography, A. Oosthoek’s Uitgevrsmaatschappij, Utrecht
26.
go back to reference Bijvoet JM, Burgers WG, Hagg G (eds) (1972) Early papers on diffraction of X-rays by crystals II. International Union of Crystallography, A. Oosthoek’s Uitgevrsmaatschappij, Utrecht Bijvoet JM, Burgers WG, Hagg G (eds) (1972) Early papers on diffraction of X-rays by crystals II. International Union of Crystallography, A. Oosthoek’s Uitgevrsmaatschappij, Utrecht
27.
go back to reference Bragg WL, Phillips DC, Lipson H (1992) The development of X-ray analysis. Dover, New York Bragg WL, Phillips DC, Lipson H (1992) The development of X-ray analysis. Dover, New York
28.
go back to reference Wooster WA (1990) A brief history of physical crystallography. Kluwer, Dordrecht Wooster WA (1990) A brief history of physical crystallography. Kluwer, Dordrecht
29.
go back to reference Bloss FD (2002) Optical microscopy, Mineralogical Society of America Monograph Series, no. 5. USA Bloss FD (2002) Optical microscopy, Mineralogical Society of America Monograph Series, no. 5. USA
30.
go back to reference Kraus EH, Hunt WF, Ramsdell LS (1959) An introduction to the study of minerals and crystals, 5th edn. McGraw-Hill Books, New York Kraus EH, Hunt WF, Ramsdell LS (1959) An introduction to the study of minerals and crystals, 5th edn. McGraw-Hill Books, New York
31.
go back to reference Wood EA (1964) Crystals and light – an introduction to optical crystallography. van Nostrand, New York Wood EA (1964) Crystals and light – an introduction to optical crystallography. van Nostrand, New York
32.
go back to reference Wood EA (1963) Crystal orientation manual. Columbia University Press, New York Wood EA (1963) Crystal orientation manual. Columbia University Press, New York
33.
go back to reference Glazer AF (2016) Crystallography. A very short introduction. Oxford University Press, Oxford Glazer AF (2016) Crystallography. A very short introduction. Oxford University Press, Oxford
34.
go back to reference Glusker JP (1990) A brief history of chemical crystallography. Kluwer, Dordrecht Glusker JP (1990) A brief history of chemical crystallography. Kluwer, Dordrecht
35.
go back to reference Wells AF (1956) The third dimension in chemistry. Clarendon Press, Oxford University Press, Oxford Wells AF (1956) The third dimension in chemistry. Clarendon Press, Oxford University Press, Oxford
36.
go back to reference Wells AF (1984) Structural inorganic chemistry, 5th edn. Clarendon Press, Oxford University Press, Oxford Wells AF (1984) Structural inorganic chemistry, 5th edn. Clarendon Press, Oxford University Press, Oxford
37.
go back to reference Mingos DMP (2019) The periodic table 1. Struct Bond 181:1–50 Mingos DMP (2019) The periodic table 1. Struct Bond 181:1–50
38.
go back to reference Bragg WL (1912) The specular reflection of X-rays. Nature 90:410 Bragg WL (1912) The specular reflection of X-rays. Nature 90:410
39.
go back to reference Bragg WL (1913) The diffraction of short electromagnetic waves by a crystal. Math Proc Cambridge Philos Soc 17:43–57 Bragg WL (1913) The diffraction of short electromagnetic waves by a crystal. Math Proc Cambridge Philos Soc 17:43–57
40.
go back to reference Bragg WL (1913) The structure of some crystals as indicated by their diffraction of X-rays. Proc R Soc Lond A89:248–277 Bragg WL (1913) The structure of some crystals as indicated by their diffraction of X-rays. Proc R Soc Lond A89:248–277
41.
go back to reference Moseley HGF, Darwin CG (1913) The reflection of X-rays. Nature 90:594–594 Moseley HGF, Darwin CG (1913) The reflection of X-rays. Nature 90:594–594
42.
go back to reference Moseley HGJ (1913) The high frequency spectra of the elements. Philos Mag 26:1024–1034 Moseley HGJ (1913) The high frequency spectra of the elements. Philos Mag 26:1024–1034
43.
go back to reference Moseley HGJ (1914) The high frequency spectra of the elements II. Philos Mag Ser 6 27:703–713 Moseley HGJ (1914) The high frequency spectra of the elements II. Philos Mag Ser 6 27:703–713
44.
go back to reference Goldschmidt VM (1926) Geochemische Verteilungsgesetze der Elemente. In: Skrifter Norske Videnskaps – Akad. Oslo, (I) Mat. Natur. This is an 8 volume set of books Goldschmidt VM (1926) Geochemische Verteilungsgesetze der Elemente. In: Skrifter Norske Videnskaps – Akad. Oslo, (I) Mat. Natur. This is an 8 volume set of books
45.
go back to reference Lewis GN (1916) The atom and the molecule. J Am Chem Soc 38:762–785 Lewis GN (1916) The atom and the molecule. J Am Chem Soc 38:762–785
46.
go back to reference Lewis GN (1923) Valence and the structures of atoms and molecules. The Chemical Catalog, New York Lewis GN (1923) Valence and the structures of atoms and molecules. The Chemical Catalog, New York
47.
go back to reference Kossel W (1916) Formation of molecules and its dependence on atomic structure. Ann Phys 49:229–362 Kossel W (1916) Formation of molecules and its dependence on atomic structure. Ann Phys 49:229–362
48.
go back to reference Mingos DMP (2016) The chemical bond 1. Struct Bond 169:1–251 Mingos DMP (2016) The chemical bond 1. Struct Bond 169:1–251
49.
go back to reference Nishigawa S (1915) Structure of some crystals of spinel group. Proc Tokyo Math Phys Soc 8:199–209 Nishigawa S (1915) Structure of some crystals of spinel group. Proc Tokyo Math Phys Soc 8:199–209
50.
go back to reference Niggli P (1919) Geometrische Kristallographie des Diskontinuums. Gebrüder-Bornträger, Leipzig Niggli P (1919) Geometrische Kristallographie des Diskontinuums. Gebrüder-Bornträger, Leipzig
51.
go back to reference Sharma BD (1982) Crystallographic and spectroscopic symmetry notations. J Chem Educ 59:554–557. gives a good discussion of these alternatives Sharma BD (1982) Crystallographic and spectroscopic symmetry notations. J Chem Educ 59:554–557. gives a good discussion of these alternatives
52.
go back to reference Lonsdale K (1928) The structure of the benzene ring. Nature 122:810–810 Lonsdale K (1928) The structure of the benzene ring. Nature 122:810–810
53.
go back to reference Sidgwick NV (1923) The nature of the non-polar link. Trans Farad Soc 19:469–475 Sidgwick NV (1923) The nature of the non-polar link. Trans Farad Soc 19:469–475
54.
go back to reference Constable EC, Housecroft CE (2013) Coordination chemistry – the legacy of Alfred Werner. Chem Soc Rev 42:1429–1439PubMed Constable EC, Housecroft CE (2013) Coordination chemistry – the legacy of Alfred Werner. Chem Soc Rev 42:1429–1439PubMed
55.
go back to reference Darwin CG (1914) The theory of X-ray reflection. Philos Mag Ser 27(6):315–333; 675–690 Darwin CG (1914) The theory of X-ray reflection. Philos Mag Ser 27(6):315–333; 675–690
56.
go back to reference Duane W (1925) The calculation of X-ray diffracting power at points in a crystal. Proc Natl Acad Sci 11:489–493PubMed Duane W (1925) The calculation of X-ray diffracting power at points in a crystal. Proc Natl Acad Sci 11:489–493PubMed
57.
go back to reference Havighurst RJ (1925) The distribution of diffracting power in sodium chloride. Proc Natl Acad Sci 11:502–507PubMed Havighurst RJ (1925) The distribution of diffracting power in sodium chloride. Proc Natl Acad Sci 11:502–507PubMed
58.
go back to reference Zachariasen WH (1929) The crystal structure of potassium chlorate Z. Kristallografiya 71:501–506 Zachariasen WH (1929) The crystal structure of potassium chlorate Z. Kristallografiya 71:501–506
59.
go back to reference Lipson H, Beevers CA (1936) An improved method of two-dimensional Fourier syntheses for crystals. Proc Phys Soc A48:772–780 Lipson H, Beevers CA (1936) An improved method of two-dimensional Fourier syntheses for crystals. Proc Phys Soc A48:772–780
60.
go back to reference Patterson A (1934) A Sourier series method for the determination of the components of the interatomic distances in crystals. Phys Rev 46:372–376 Patterson A (1934) A Sourier series method for the determination of the components of the interatomic distances in crystals. Phys Rev 46:372–376
61.
go back to reference Patterson A (1935) A direct method for the determination of the components of the interatomic distances in crystals Z. Kristallografiya 90:517–542 Patterson A (1935) A direct method for the determination of the components of the interatomic distances in crystals Z. Kristallografiya 90:517–542
62.
go back to reference Hauptman HA (1990) History of X-ray crystallography. Struct Chem 6:617–620 Hauptman HA (1990) History of X-ray crystallography. Struct Chem 6:617–620
63.
go back to reference Hauptman HA, Karle J (1953) The solution of the phase problem I. The centrosymmetric crystal: American Crystallographic Association monograph no 3. Polycrystal Book Service, Dayton Hauptman HA, Karle J (1953) The solution of the phase problem I. The centrosymmetric crystal: American Crystallographic Association monograph no 3. Polycrystal Book Service, Dayton
64.
go back to reference Bijvoet JM, Peerdeman JM, Van Bommel AJ (1951) Determination of the absolute configuration of optically active compounds by X-rays. Nature 168:271–273 Bijvoet JM, Peerdeman JM, Van Bommel AJ (1951) Determination of the absolute configuration of optically active compounds by X-rays. Nature 168:271–273
65.
go back to reference Monaco HL (1992) Experimental methods in X-ray crystallography. In: Giacovazzo C, Manaco HL, Vierbo D, Scordari F, Gilli G, Catti M (eds) Fundamentals of crystallography, international union of crystallography. Oxford University Press, Oxford, pp 229–318 Monaco HL (1992) Experimental methods in X-ray crystallography. In: Giacovazzo C, Manaco HL, Vierbo D, Scordari F, Gilli G, Catti M (eds) Fundamentals of crystallography, international union of crystallography. Oxford University Press, Oxford, pp 229–318
66.
go back to reference Wyckoff RWG (1935–1971) Crystal structures, vols 1–6. Wiley, New York Wyckoff RWG (1935–1971) Crystal structures, vols 1–6. Wiley, New York
67.
go back to reference Ebsworth EAV, Rankin DWH, Cradock S (1991) Structural methods in inorganic chemistry, 2nd edn. Blackwell Scientific Publications, London Ebsworth EAV, Rankin DWH, Cradock S (1991) Structural methods in inorganic chemistry, 2nd edn. Blackwell Scientific Publications, London
68.
go back to reference Welch AJ (2017) What can we learn from the structures of metallocarboranes? Crystals 7:234 Welch AJ (2017) What can we learn from the structures of metallocarboranes? Crystals 7:234
69.
go back to reference Mednikov EG, Dahl LF (2013) How innocent is thallium(I)? Corrected formula of clusters previously reported as Au2Pd14 and AuPd9 carbonyl clusters. Chem Commun 49:1085–1087 Mednikov EG, Dahl LF (2013) How innocent is thallium(I)? Corrected formula of clusters previously reported as Au2Pd14 and AuPd9 carbonyl clusters. Chem Commun 49:1085–1087
70.
go back to reference West AR (2000) Basic solid state chemistry, 2nd edn. Wiley, Chichester, p 162 West AR (2000) Basic solid state chemistry, 2nd edn. Wiley, Chichester, p 162
71.
go back to reference Hull AW (1917) The crystal structure of iron. Phys Rev 9:84–90 Hull AW (1917) The crystal structure of iron. Phys Rev 9:84–90
72.
go back to reference Hull AW (1917) The crystal structure of magnesium. Proc Natl Acad Sci 3:470–473PubMed Hull AW (1917) The crystal structure of magnesium. Proc Natl Acad Sci 3:470–473PubMed
73.
go back to reference Debye P, Scherrer P (1916) Interferenz an regelos orintierten Teilschen im Röntgenlicht 1. Phys Z 17:277–285 Debye P, Scherrer P (1916) Interferenz an regelos orintierten Teilschen im Röntgenlicht 1. Phys Z 17:277–285
74.
75.
go back to reference Cullity BD (1978) Elements of X-ray diffraction. Addison Wesley, Boston Cullity BD (1978) Elements of X-ray diffraction. Addison Wesley, Boston
76.
go back to reference David WIF, Shankland K, McCusker LB, Baerlocher C (eds) (2002) Structure determination from powder diffraction data. IUCr monographs on crystallography, vol 13. Oxford Science Publications, Oxford David WIF, Shankland K, McCusker LB, Baerlocher C (eds) (2002) Structure determination from powder diffraction data. IUCr monographs on crystallography, vol 13. Oxford Science Publications, Oxford
77.
go back to reference Warren BE (1990) X-ray diffraction. Addison Wesley, Reading Warren BE (1990) X-ray diffraction. Addison Wesley, Reading
78.
go back to reference Lightfoot P, Tremayne M, Harris DM, Bruce PG (1992) Determination of a molecular crystal structure by X-ray powder diffraction on a conventional laboratory instrument. J Chem Soc Chem Commun 1992:1012–1103 Lightfoot P, Tremayne M, Harris DM, Bruce PG (1992) Determination of a molecular crystal structure by X-ray powder diffraction on a conventional laboratory instrument. J Chem Soc Chem Commun 1992:1012–1103
79.
go back to reference Masciocchi N, Moret M, Cairati P, Sironi A (1993) Solving the structure of simple organometallic structures solely from X-ray powder diffraction data: the case of polymeric [{Ru(CO)4}n]. J Chem Soc Dalton Trans 3:471–475 Masciocchi N, Moret M, Cairati P, Sironi A (1993) Solving the structure of simple organometallic structures solely from X-ray powder diffraction data: the case of polymeric [{Ru(CO)4}n]. J Chem Soc Dalton Trans 3:471–475
80.
go back to reference Stokes AR, Wilson AJC (1942) A method for calculating the integral breadths of Debye-Scherrer lines. Proc Phys Soc 38:313–322 Stokes AR, Wilson AJC (1942) A method for calculating the integral breadths of Debye-Scherrer lines. Proc Phys Soc 38:313–322
81.
go back to reference Stokes AR, Wilson AJC (1944) The diffraction of X-rays by distorted-crystal aggregates. Proc Phys Soc A 56:174–181 Stokes AR, Wilson AJC (1944) The diffraction of X-rays by distorted-crystal aggregates. Proc Phys Soc A 56:174–181
82.
go back to reference Warren BE (1969) X-ray diffraction. Addison Wesley, Reading Warren BE (1969) X-ray diffraction. Addison Wesley, Reading
83.
go back to reference Warren BE, Averbach BL (1952) The separation of cold-work distortion on X-ray patterns. J Appl Phys 21:595–599 Warren BE, Averbach BL (1952) The separation of cold-work distortion on X-ray patterns. J Appl Phys 21:595–599
84.
go back to reference Lovesey SW (1984) Theory of neutron diffraction from condensed matter. Volume 1: Neutron scattering. Clarendon Press, Oxford University Press, Oxford Lovesey SW (1984) Theory of neutron diffraction from condensed matter. Volume 1: Neutron scattering. Clarendon Press, Oxford University Press, Oxford
85.
go back to reference Piccoli PMB, Koetzle TF, Schultz AJ (2007) Single crystal neutron diffraction for the inorganic chemist – a practical guide. Comments Inorg Chem 28:303 Piccoli PMB, Koetzle TF, Schultz AJ (2007) Single crystal neutron diffraction for the inorganic chemist – a practical guide. Comments Inorg Chem 28:303
86.
go back to reference Bau R, Drabnis MH (1997) Structures of transition metal hydrides determined by neutron diffraction. Inorg Chim Acta 259:27–50 Bau R, Drabnis MH (1997) Structures of transition metal hydrides determined by neutron diffraction. Inorg Chim Acta 259:27–50
87.
go back to reference Shull C (1995) Early development of neutron scattering. Rev Mod Phys 67:753–757 Shull C (1995) Early development of neutron scattering. Rev Mod Phys 67:753–757
88.
go back to reference Ibberson RM, David WIF (2002) Neutron powder diffraction structure determination from powder diffraction data, Chapter 5. Oxford University Press, Oxford Ibberson RM, David WIF (2002) Neutron powder diffraction structure determination from powder diffraction data, Chapter 5. Oxford University Press, Oxford
89.
go back to reference Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, Oxford, pp 235–245 Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, Oxford, pp 235–245
90.
go back to reference Davies M (1947) The physical aspects of the hydrogen bond. Annu Rep Prog Chem 43:5–29 Davies M (1947) The physical aspects of the hydrogen bond. Annu Rep Prog Chem 43:5–29
91.
go back to reference Hunter L (1947) The hydrogen bond. Annu Rep Prog Chem 43:141–154 Hunter L (1947) The hydrogen bond. Annu Rep Prog Chem 43:141–154
92.
go back to reference Flierler U, Stalke D (2012) More than just distances from electron density studies. Struct Bond 146:1–20 Flierler U, Stalke D (2012) More than just distances from electron density studies. Struct Bond 146:1–20
93.
go back to reference Madsen AO (2012) Modelling and analysis of hydrogen atoms. Struct Bond 146:21–52 Madsen AO (2012) Modelling and analysis of hydrogen atoms. Struct Bond 146:21–52
94.
go back to reference Engles B, Schmidt TC, Gati C, Schirmeister T, Fink RF (2012) Challenging problems in charge density: polar bonds and the influence of the environment determination. Struct Bond 147:47–98 Engles B, Schmidt TC, Gati C, Schirmeister T, Fink RF (2012) Challenging problems in charge density: polar bonds and the influence of the environment determination. Struct Bond 147:47–98
95.
go back to reference Coppens P (2005) Charge density comes of age. Angew Chem Int Ed 44:6800–6811 Coppens P (2005) Charge density comes of age. Angew Chem Int Ed 44:6800–6811
96.
go back to reference Coppens P (1997) X-ray charge densities and chemical bonding. Oxford University Press, Oxford Coppens P (1997) X-ray charge densities and chemical bonding. Oxford University Press, Oxford
97.
go back to reference Bader RF (1990) Atoms in molecules – a quantum theory. Oxford University Press, Oxford Bader RF (1990) Atoms in molecules – a quantum theory. Oxford University Press, Oxford
98.
go back to reference Popelier PA (2014) The quantum theory of atoms in molecules. In: Frenking G, Shaik S (eds) The nature of the chemical bond revisited. Weinheim, Wiley, pp 271–308 Popelier PA (2014) The quantum theory of atoms in molecules. In: Frenking G, Shaik S (eds) The nature of the chemical bond revisited. Weinheim, Wiley, pp 271–308
99.
go back to reference Izyumov Yu A, Naish VE, Ozerov RP (1991) Neutron diffraction of magnetic materials, translated from Russian by Joachim Buchner. New York Consultants Bureau, New York Izyumov Yu A, Naish VE, Ozerov RP (1991) Neutron diffraction of magnetic materials, translated from Russian by Joachim Buchner. New York Consultants Bureau, New York
100.
go back to reference Seip HM (1973) Molecular structure by diffraction methods. Specialist Periodical Report, vol 1, p 1 Seip HM (1973) Molecular structure by diffraction methods. Specialist Periodical Report, vol 1, p 1
101.
go back to reference Rankin DWH, Mitzel N, Morrison C (2013) Structural methods in molecular inorganic chemistry. Wiley, Weinhem Rankin DWH, Mitzel N, Morrison C (2013) Structural methods in molecular inorganic chemistry. Wiley, Weinhem
102.
go back to reference Hargittai I, Hargittai M (eds) (1988) Stereochemical applications of gas phase electron diffraction. VCH Publishers, Weinheim Hargittai I, Hargittai M (eds) (1988) Stereochemical applications of gas phase electron diffraction. VCH Publishers, Weinheim
103.
go back to reference Hilderbrandt RL, Bonham RL (1971) Structure determination by gas electron diffraction. Annu Rev Phys Chem 22(1):279–312 Hilderbrandt RL, Bonham RL (1971) Structure determination by gas electron diffraction. Annu Rev Phys Chem 22(1):279–312
104.
go back to reference Rankin DWH, Robertson HE (2009) Davidson G, Ebsworth EAV (eds) Spectroscopic properties of inorganic and organometallic compounds, vol 40. Royal Society of Chemistry, London, pp 1927-1935 Rankin DWH, Robertson HE (2009) Davidson G, Ebsworth EAV (eds) Spectroscopic properties of inorganic and organometallic compounds, vol 40. Royal Society of Chemistry, London, pp 1927-1935
105.
go back to reference Wann DA, Rankin DWH, McCaffrey D, Martin JML, Mawhorter RJ (2014) Equilibrium gas-phase structures of sodium fluoride, bromide, and iodide monomers and dimers. J Phys Chem A 118:1925–1937 Wann DA, Rankin DWH, McCaffrey D, Martin JML, Mawhorter RJ (2014) Equilibrium gas-phase structures of sodium fluoride, bromide, and iodide monomers and dimers. J Phys Chem A 118:1925–1937
106.
go back to reference Wann DA, Reilly AM, Rataboul F, Lickiss PD, Rankin DWH (2009) The gas-phase structure of the hexasilsesquioxane Si6O9(OSiMe3)6. Zeit Naturforsch B 64:1269–1275 Wann DA, Reilly AM, Rataboul F, Lickiss PD, Rankin DWH (2009) The gas-phase structure of the hexasilsesquioxane Si6O9(OSiMe3)6. Zeit Naturforsch B 64:1269–1275
107.
go back to reference Hnyk D, Rankin DWH (2009) Stereochemistry of free boranes and heteroboranes from electron scattering and model chemistries. J Chem Soc Dalton Trans 4:585–599 Hnyk D, Rankin DWH (2009) Stereochemistry of free boranes and heteroboranes from electron scattering and model chemistries. J Chem Soc Dalton Trans 4:585–599
108.
go back to reference Haaland A (2007) Molecules and models – the molecular structures of main group molecules. Oxford University Press, Oxford Haaland A (2007) Molecules and models – the molecular structures of main group molecules. Oxford University Press, Oxford
109.
go back to reference Hargattai M (2000) Structures of metal halides in the gas phase. Chem Rev 100:2233 Hargattai M (2000) Structures of metal halides in the gas phase. Chem Rev 100:2233
110.
go back to reference Haaland A (1988) Organometallic compounds of main group elements in stereochemical. In: Harattai I, Hargattai M, van Nostrand E (eds) Applications of gas phase electron diffraction, part B, Structural information for selected classes of compound. Wiley, New York Haaland A (1988) Organometallic compounds of main group elements in stereochemical. In: Harattai I, Hargattai M, van Nostrand E (eds) Applications of gas phase electron diffraction, part B, Structural information for selected classes of compound. Wiley, New York
111.
go back to reference Haaland A (1989) Covalent vs dative bonds to main group metals – a useful distinction. Angew Chem Int Ed 28:992–1007 Haaland A (1989) Covalent vs dative bonds to main group metals – a useful distinction. Angew Chem Int Ed 28:992–1007
112.
go back to reference Haaland A (2016) Lewis and Kossel’s legacy: structure and bonding in main group compounds in the chemical bond II. In: Mingos DMP (ed) Structure and bonding, vol 170, pp 1–70 Haaland A (2016) Lewis and Kossel’s legacy: structure and bonding in main group compounds in the chemical bond II. In: Mingos DMP (ed) Structure and bonding, vol 170, pp 1–70
113.
go back to reference Rankin DWH, Robertson HE, Danopoulos AA, Lyne PD, Mingos DMP, Wilkinson G (1994) Molecular structure of tetrakis(t-butylimido)osmium(VIII) determined in the gas phase by electron diffraction. J Chem Soc Dalton Trans 4:1563–1569 Rankin DWH, Robertson HE, Danopoulos AA, Lyne PD, Mingos DMP, Wilkinson G (1994) Molecular structure of tetrakis(t-butylimido)osmium(VIII) determined in the gas phase by electron diffraction. J Chem Soc Dalton Trans 4:1563–1569
114.
go back to reference Thompson HB, Bartell LS, Bonham RA (1968) Inorg Chem 7:488–491 Thompson HB, Bartell LS, Bonham RA (1968) Inorg Chem 7:488–491
115.
go back to reference Hansen HW, Bartell LS (1965) Electron diffraction study of PF5. Inorg Chem 4:1775–1779 Hansen HW, Bartell LS (1965) Electron diffraction study of PF5. Inorg Chem 4:1775–1779
116.
go back to reference Bartell LS (1972) Galloway G (ed) Molecular geometry in collected readings in inorganic chemistry, vol 2. Chemical Education Publishing, Easton, p 220 Bartell LS (1972) Galloway G (ed) Molecular geometry in collected readings in inorganic chemistry, vol 2. Chemical Education Publishing, Easton, p 220
117.
go back to reference Gruene T, Wennmacher JT, Zaubitzer C, Holstein JJ, Heidler J, Fecteau-Lefebvre A, De Carlo S, Müller E, Goldie KN, Regeni I, Li T, Santiso-Quinones G, Steinfeld G, Handschin S, van Genderen E, van Bokhoven JA, Clever GH, Pantelic R (2018) Rapid structure determination of microcrystalline molecular compounds using electron diffraction. Angew Chem Int Ed 57:16313–16317 Gruene T, Wennmacher JT, Zaubitzer C, Holstein JJ, Heidler J, Fecteau-Lefebvre A, De Carlo S, Müller E, Goldie KN, Regeni I, Li T, Santiso-Quinones G, Steinfeld G, Handschin S, van Genderen E, van Bokhoven JA, Clever GH, Pantelic R (2018) Rapid structure determination of microcrystalline molecular compounds using electron diffraction. Angew Chem Int Ed 57:16313–16317
Metadata
Title
Early History of X-Ray Crystallography
Author
D. Michael P. Mingos
Copyright Year
2020
DOI
https://doi.org/10.1007/430_2020_73

Premium Partners