Skip to main content
Top
Published in:

01-12-2023 | Original Article

Early multi-class ensemble-based fake news detection using content features

Authors: Sajjad Rezaei, Mohsen Kahani, Behshid Behkamal, Abdulrahman Jalayer

Published in: Social Network Analysis and Mining | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article presents a novel approach to early fake news detection using content features and an ensemble-based model. It emphasizes the shift from binary to multi-class classification to better capture the evolving styles of fake news. The proposed model employs a stacking ensemble network with five classifiers and is evaluated on a new dataset collected from reputable fact-checking websites. The results demonstrate the superior performance of the multi-class model compared to traditional binary classification methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Agarwal A and A Dixit (2020) Fake news detection: an ensemble learning approach. 2020 4th international conference on intelligent computing and control systems (ICICCS), IEEE Agarwal A and A Dixit (2020) Fake news detection: an ensemble learning approach. 2020 4th international conference on intelligent computing and control systems (ICICCS), IEEE
go back to reference Allcott H, Gentzkow M (2017) Social media and fake news in the 2016 election. J Econom Perspect 31(2):211–236CrossRef Allcott H, Gentzkow M (2017) Social media and fake news in the 2016 election. J Econom Perspect 31(2):211–236CrossRef
go back to reference Bishop CM, Nasrabadi NM (2006) Pattern recognition and machine learning. Springer Bishop CM, Nasrabadi NM (2006) Pattern recognition and machine learning. Springer
go back to reference Castillo C, et al. (2011) Information credibility on twitter. Proceedings of the 20th international conference on World wide web Castillo C, et al. (2011) Information credibility on twitter. Proceedings of the 20th international conference on World wide web
go back to reference Chen T and C Guestrin (2016) Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Chen T and C Guestrin (2016) Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining
go back to reference Ho T K (1995) Random decision forests. Proceedings of 3rd international conference on document analysis and recognition, IEEE Ho T K (1995) Random decision forests. Proceedings of 3rd international conference on document analysis and recognition, IEEE
go back to reference Huang Y-F, Chen P-H (2020) Fake news detection using an ensemble learning model based on self-adaptive harmony search algorithms. Expert Syst Appl 159:113584CrossRef Huang Y-F, Chen P-H (2020) Fake news detection using an ensemble learning model based on self-adaptive harmony search algorithms. Expert Syst Appl 159:113584CrossRef
go back to reference Hutto C and E Gilbert (2014) Vader: a parsimonious rule-based model for sentiment analysis of social media text. Proceedings of the international AAAI conference on web and social media Hutto C and E Gilbert (2014) Vader: a parsimonious rule-based model for sentiment analysis of social media text. Proceedings of the international AAAI conference on web and social media
go back to reference Ke G, et al (2017) "Lightgbm: A highly efficient gradient boosting decision tree." Advances in neural information processing systems 30. Ke G, et al (2017) "Lightgbm: A highly efficient gradient boosting decision tree." Advances in neural information processing systems 30.
go back to reference Mitra T and E Gilbert (2015) Credbank: a large-scale social media corpus with associated credibility annotations. Ninth international AAAI conference on web and social media Mitra T and E Gilbert (2015) Credbank: a large-scale social media corpus with associated credibility annotations. Ninth international AAAI conference on web and social media
go back to reference Opitz D, Maclin R (1999) Popular ensemble methods: an empirical study. J Artific Intell Res 11:169–198CrossRef Opitz D, Maclin R (1999) Popular ensemble methods: an empirical study. J Artific Intell Res 11:169–198CrossRef
go back to reference Palani B et al (2021) CB-Fake: a multimodal deep learning framework for automatic fake news detection using capsule neural network and BERT. Multimedia Tools Appl 81(4):1–34 Palani B et al (2021) CB-Fake: a multimodal deep learning framework for automatic fake news detection using capsule neural network and BERT. Multimedia Tools Appl 81(4):1–34
go back to reference Potthast M, Kiesel J, Reinartz K, Bevendorff J, Stein B (2017) A stylometric inquiry into hyperpartisan and fake news. arXiv preprint arXiv:1702.05638. Potthast M, Kiesel J, Reinartz K, Bevendorff J, Stein B (2017) A stylometric inquiry into hyperpartisan and fake news. arXiv preprint arXiv:​1702.​05638.
go back to reference Rapoza K (2017) "Can ‘fake news’ impact the stock market?" Forbes News. Rapoza K (2017) "Can ‘fake news’ impact the stock market?" Forbes News.
go back to reference Rashkin H et al (2017) Truth of varying shades: analyzing language in fake news and political fact-checking. Proceedings of the 2017 conference on empirical methods in natural language processing Rashkin H et al (2017) Truth of varying shades: analyzing language in fake news and political fact-checking. Proceedings of the 2017 conference on empirical methods in natural language processing
go back to reference Rezaei S et al (2021) The process of multi-class fake news dataset generation. 2021 11th international conference on computer engineering and knowledge (ICCKE), IEEE Rezaei S et al (2021) The process of multi-class fake news dataset generation. 2021 11th international conference on computer engineering and knowledge (ICCKE), IEEE
go back to reference Rubin V L, et al (2016) Fake news or truth? Using satirical cues to detect potentially misleading news. Proceedings of the second workshop on computational approaches to deception detection Rubin V L, et al (2016) Fake news or truth? Using satirical cues to detect potentially misleading news. Proceedings of the second workshop on computational approaches to deception detection
go back to reference Shu K et al (2019) Beyond news contents: the role of social context for fake news detection. Proceedings of the twelfth ACM international conference on web search and data mining Shu K et al (2019) Beyond news contents: the role of social context for fake news detection. Proceedings of the twelfth ACM international conference on web search and data mining
go back to reference Toosi AN, Kahani M (2007) A new approach to intrusion detection based on an evolutionary soft computing model using neuro-fuzzy classifiers. Comput Commun 30(10):2201–2212CrossRef Toosi AN, Kahani M (2007) A new approach to intrusion detection based on an evolutionary soft computing model using neuro-fuzzy classifiers. Comput Commun 30(10):2201–2212CrossRef
go back to reference Vicario MD et al (2019) Polarization and fake news: early warning of potential misinformation targets. ACM Trans Web (TWEB) 13(2):1–22CrossRef Vicario MD et al (2019) Polarization and fake news: early warning of potential misinformation targets. ACM Trans Web (TWEB) 13(2):1–22CrossRef
go back to reference Zhou X et al (2020) Fake news early detection: a theory-driven model. Digital Threats: Res Practice 1(2):1–25CrossRef Zhou X et al (2020) Fake news early detection: a theory-driven model. Digital Threats: Res Practice 1(2):1–25CrossRef
go back to reference Zhou X and R Zafarani (2018) "Fake news: a survey of research, detection methods, and opportunities." arXiv preprint arXiv:1812.00315 2 Zhou X and R Zafarani (2018) "Fake news: a survey of research, detection methods, and opportunities." arXiv preprint arXiv:​1812.​00315 2
Metadata
Title
Early multi-class ensemble-based fake news detection using content features
Authors
Sajjad Rezaei
Mohsen Kahani
Behshid Behkamal
Abdulrahman Jalayer
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2023
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-022-01019-y

Premium Partner