Skip to main content
Top

2021 | OriginalPaper | Chapter

Earthquake Prediction Based on Combined Seismic and GPS Monitoring Data

Authors : V. G. Gitis, A. B. Derendyaev, K. N. Petrov

Published in: Computational Science and Its Applications – ICCSA 2021

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This article presents the results of applying the method of the minimum area of alarm to the complex forecasting of earthquakes based on data of different types. Point fields of earthquake epicenters and time series of displacements of the earth’s surface, measured using GPS, were used for the prediction. Testing was carried out for earthquakes with a hypocenter depth of up to 60 km for two regions with different seismotectonics: Japan, the forecast time interval from 2016 to 2020, magnitudes \(m \ge 6\); California, the forecast time interval from 2013 to 2020, magnitude \(m \ge 5.5\). Testing has shown the effectiveness of systematic earthquake forecasting using seismological and space geodesy data in combination.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Barnhart, W.D., Hayes, G.P., Wald, D.J.: Global earthquake response with imaging geodesy: recent examples from the USGS NEIC. Remote Sens. 11(11), 1357 (2019)CrossRef Barnhart, W.D., Hayes, G.P., Wald, D.J.: Global earthquake response with imaging geodesy: recent examples from the USGS NEIC. Remote Sens. 11(11), 1357 (2019)CrossRef
2.
go back to reference Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)MATH Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)MATH
3.
go back to reference Blewitt, G., Hammond, W.C., Kreemer, C.: Harnessing the GPS data explosion for interdisciplinary science. Eos 99(10.1029) (2018) Blewitt, G., Hammond, W.C., Kreemer, C.: Harnessing the GPS data explosion for interdisciplinary science. Eos 99(10.1029) (2018)
4.
go back to reference Dobrovolsky, I., Zubkov, S., Miachkin, V.: Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 117(5), 1025–1044 (1979)CrossRef Dobrovolsky, I., Zubkov, S., Miachkin, V.: Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 117(5), 1025–1044 (1979)CrossRef
5.
go back to reference Garagash, I., Bondur, V., Gokhberg, M., Steblov, G.: Three-year experience of the fortnight forecast of seismicity in Southern California on the basis of geomechanical model and the seismic data. In: AGU Fall Meeting Abstracts, vol. 2011, pp. NH23A-1535 (2011) Garagash, I., Bondur, V., Gokhberg, M., Steblov, G.: Three-year experience of the fortnight forecast of seismicity in Southern California on the basis of geomechanical model and the seismic data. In: AGU Fall Meeting Abstracts, vol. 2011, pp. NH23A-1535 (2011)
6.
go back to reference Geller, R.J., Jackson, D.D., Kagan, Y.Y., Mulargia, F.: Earthquakes cannot be predicted. Science 275(5306), 1616 (1997)CrossRef Geller, R.J., Jackson, D.D., Kagan, Y.Y., Mulargia, F.: Earthquakes cannot be predicted. Science 275(5306), 1616 (1997)CrossRef
7.
go back to reference Gitis, V., Derendyaev, A.: The method of the minimum area of alarm for earthquake magnitude prediction. Front. Earth Sci. 8, 482 (2020) Gitis, V., Derendyaev, A.: The method of the minimum area of alarm for earthquake magnitude prediction. Front. Earth Sci. 8, 482 (2020)
8.
go back to reference Gitis, V.G., Derendyaev, A.B.: Machine learning methods for seismic hazards forecast. Geosciences 9(7), 308 (2019)CrossRef Gitis, V.G., Derendyaev, A.B.: Machine learning methods for seismic hazards forecast. Geosciences 9(7), 308 (2019)CrossRef
9.
go back to reference Gufeld, I.L., Matveeva, M.I., Novoselov, O.N.: Why we cannot predict strong earthquakes in the earth’s crust. Geodyn. Tectonophys. 2(4), 378–415 (2015)CrossRef Gufeld, I.L., Matveeva, M.I., Novoselov, O.N.: Why we cannot predict strong earthquakes in the earth’s crust. Geodyn. Tectonophys. 2(4), 378–415 (2015)CrossRef
10.
go back to reference Guomin, Z., Zhaocheng, Z.: The study of multidisciplinary earthquake prediction in China. J. Earthq. Predction Res. 1(1), 71–85 (1992) Guomin, Z., Zhaocheng, Z.: The study of multidisciplinary earthquake prediction in China. J. Earthq. Predction Res. 1(1), 71–85 (1992)
11.
go back to reference Kanamori, H.: The nature of seismicity patterns before large earthquakes (1981) Kanamori, H.: The nature of seismicity patterns before large earthquakes (1981)
12.
go back to reference Keilis-Borok, V., Soloviev, A.A.: Nonlinear Dynamics of the Lithosphere and Earthquake Prediction. Springer, Heidelberg (2013) Keilis-Borok, V., Soloviev, A.A.: Nonlinear Dynamics of the Lithosphere and Earthquake Prediction. Springer, Heidelberg (2013)
14.
go back to reference King, C.Y.: Gas geochemistry applied to earthquake prediction: an overview. J. Geophys. Res. Solid Earth 91(B12), 12269–12281 (1986)CrossRef King, C.Y.: Gas geochemistry applied to earthquake prediction: an overview. J. Geophys. Res. Solid Earth 91(B12), 12269–12281 (1986)CrossRef
15.
go back to reference Koronovsky, N., Naimark, A.: Earthquake prediction: is it a practicable scientific perspective or a challenge to science? Mosc. Univ. Geol. Bull. 64(1), 10–20 (2009)CrossRef Koronovsky, N., Naimark, A.: Earthquake prediction: is it a practicable scientific perspective or a challenge to science? Mosc. Univ. Geol. Bull. 64(1), 10–20 (2009)CrossRef
16.
go back to reference Kossobokov, V.: User manual for M8. In: Healy, J.H., Keilis-Borok, V.I., Lee, W.H.K. (eds.) Algorithms for Earthquake Statistics and Prediction, vol. 6, pp. 167–222 (1997) Kossobokov, V.: User manual for M8. In: Healy, J.H., Keilis-Borok, V.I., Lee, W.H.K. (eds.) Algorithms for Earthquake Statistics and Prediction, vol. 6, pp. 167–222 (1997)
17.
go back to reference Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: Supervised machine learning: a review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 160(1), 3–24 (2007) Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: Supervised machine learning: a review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 160(1), 3–24 (2007)
18.
go back to reference Lighthill, J.: A Critical Review of VAN: Earthquake Prediction from Seismic Electrical Signals. World Scientific (1996) Lighthill, J.: A Critical Review of VAN: Earthquake Prediction from Seismic Electrical Signals. World Scientific (1996)
19.
go back to reference Lobkovsky, L., Vladimirova, I., Gabsatarov, Y.V., Steblov, G.: Seismotectonic deformations related to the 2011 Tohoku earthquake at different stages of the seismic cycle, based on satellite geodetic observations. Doklady Earth Sci. 481, 1060–1065 (2018)CrossRef Lobkovsky, L., Vladimirova, I., Gabsatarov, Y.V., Steblov, G.: Seismotectonic deformations related to the 2011 Tohoku earthquake at different stages of the seismic cycle, based on satellite geodetic observations. Doklady Earth Sci. 481, 1060–1065 (2018)CrossRef
20.
go back to reference Mogi, K.: Two kinds of seismic gaps. Pure Appl. Geophys. 117(6), 1172–1186 (1979)CrossRef Mogi, K.: Two kinds of seismic gaps. Pure Appl. Geophys. 117(6), 1172–1186 (1979)CrossRef
21.
go back to reference Obara, K., Kasahara, K., Hori, S., Okada, Y.: A densely distributed high-sensitivity seismograph network in Japan: Hi-net by national research institute for earth science and disasterprevention. Rev. Sci. Instrum. 76(2), 021301 (2005)CrossRef Obara, K., Kasahara, K., Hori, S., Okada, Y.: A densely distributed high-sensitivity seismograph network in Japan: Hi-net by national research institute for earth science and disasterprevention. Rev. Sci. Instrum. 76(2), 021301 (2005)CrossRef
22.
go back to reference Okada, Y., et al.: Recent progress of seismic observation networks in Japan-Hi-net, F-net, K-net and KiK-net. Earth Planets Space 56(8), xv–xxviii (2004) Okada, Y., et al.: Recent progress of seismic observation networks in Japan-Hi-net, F-net, K-net and KiK-net. Earth Planets Space 56(8), xv–xxviii (2004)
23.
go back to reference Rhoades, D.A.: Application of the EEPAS model to forecasting earthquakes of moderate magnitude in southern California. Seismol. Res. Lett. 78(1), 110–115 (2007)CrossRef Rhoades, D.A.: Application of the EEPAS model to forecasting earthquakes of moderate magnitude in southern California. Seismol. Res. Lett. 78(1), 110–115 (2007)CrossRef
24.
go back to reference Rhoades, D.A.: Mixture models for improved earthquake forecasting with short-to-medium time horizons. Bull. Seismol. Soc. Am. 103(4), 2203–2215 (2013)CrossRef Rhoades, D.A.: Mixture models for improved earthquake forecasting with short-to-medium time horizons. Bull. Seismol. Soc. Am. 103(4), 2203–2215 (2013)CrossRef
26.
go back to reference Sobolev, G.: Principles of earthquake prediction (1993) Sobolev, G.: Principles of earthquake prediction (1993)
27.
go back to reference Sobolev, G., Ponomarev, A.: Earthquake Physics and Precursors. Publishing House Nauka, Moscow (2003) Sobolev, G., Ponomarev, A.: Earthquake Physics and Precursors. Publishing House Nauka, Moscow (2003)
29.
go back to reference Zavyalov, A.: Intermediate Term Earthquake Prediction. Nauka, Moscow (2006) Zavyalov, A.: Intermediate Term Earthquake Prediction. Nauka, Moscow (2006)
30.
go back to reference Zhang, L.Y., Mao, X.B., Lu, A.H.: Experimental study of the mechanical properties of rocks at high temperature. Sci. China Ser. E 52(3), 641–646 (2009)CrossRef Zhang, L.Y., Mao, X.B., Lu, A.H.: Experimental study of the mechanical properties of rocks at high temperature. Sci. China Ser. E 52(3), 641–646 (2009)CrossRef
Metadata
Title
Earthquake Prediction Based on Combined Seismic and GPS Monitoring Data
Authors
V. G. Gitis
A. B. Derendyaev
K. N. Petrov
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-86979-3_42

Premium Partner