Skip to main content
Top
Published in: Mechanics of Composite Materials 1/2023

13-03-2023

Ecocomposites Based on High-Impact Polystyrene (HIPS) and Amazon Açaí (Euterpe oleracea) Fibers: Influence of NaOH Treatment on Its Structural, Thermal, and Mechanical Properties

Authors: E. C. Silva, A. F. da Silva, Y. S. da Rodrigues, D. S. Correia Júnior, L. M. de Oliveira, M. M. Biondo, P. H. C. Felix, H. B. E. Sales, E. A. Sanches

Published in: Mechanics of Composite Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The structural, thermal, morphological, and mechanical properties of ecocomposites based on a High-Impact Polystyrene (HIPS) reinforced with açaí (Euterpe oleracea) fibers were evaluated. They were made using 5 wt% açaí fibers treated using 5% NaOH (FT5) and 7% NaOH (FT7). According to a SEM analysis, the alkaline treatment allowed us to remove of the low-molecular weight compounds. The FT5 ecocomposite had a higher elongation, (2.9 ± 0.5)%, and impact of resistance, (98 ± 2) J/m, probably due to the presence of mechanical anchoring, which improved its mechanical properties. The FT7 ecocomposite had a slightly higher thermal stability, with a total mass loss of 87.78%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. K. A. Barnes, F. Galgani, R. C. Thompson, and M. Barlaz, “Accumulation and fragmentation of plastic debris in global environments,” Phil. Trans. R. Soc. B, 364, No. 1525, 1985-1998 (2009).CrossRef D. K. A. Barnes, F. Galgani, R. C. Thompson, and M. Barlaz, “Accumulation and fragmentation of plastic debris in global environments,” Phil. Trans. R. Soc. B, 364, No. 1525, 1985-1998 (2009).CrossRef
2.
go back to reference S. Hınıslıoglu and E. Ağar, “Use of waste high density polyethylene as bitumen modifier in asphalt concrete mix,” Mater. Lett., 58, No. 3-4, 267-271 (2004).CrossRef S. Hınıslıoglu and E. Ağar, “Use of waste high density polyethylene as bitumen modifier in asphalt concrete mix,” Mater. Lett., 58, No. 3-4, 267-271 (2004).CrossRef
3.
go back to reference V. Nagarajan, A. K. Mohanty, and M. Misra, “Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance,” ACS Sustain. Chem. Eng., 4, No. 6, 2899-2916 (2016).CrossRef V. Nagarajan, A. K. Mohanty, and M. Misra, “Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance,” ACS Sustain. Chem. Eng., 4, No. 6, 2899-2916 (2016).CrossRef
4.
go back to reference P. H. F. Pereira, M. de F. Rosa, M. O. H. Cioffi, K. C. C. de C. Benini, A. C. Milanese, H. J. C. Voorwald, and D. R. Mulinari, “Vegetal fibers in polymeric composites: A review,” Polímeros, 25, No. 1, 9-22 (2015). P. H. F. Pereira, M. de F. Rosa, M. O. H. Cioffi, K. C. C. de C. Benini, A. C. Milanese, H. J. C. Voorwald, and D. R. Mulinari, “Vegetal fibers in polymeric composites: A review,” Polímeros, 25, No. 1, 9-22 (2015).
5.
go back to reference J. Naveen, M. Jawaid, P. Amuthakkannana, and M. Chandrasekar, in: M. Jawaid, M. Thariq and N. Saba, Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites, Ch. 28, Woodhead Publishing, Elsevier Ltd., U. K., 427-440 (2019). J. Naveen, M. Jawaid, P. Amuthakkannana, and M. Chandrasekar, in: M. Jawaid, M. Thariq and N. Saba, Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites, Ch. 28, Woodhead Publishing, Elsevier Ltd., U. K., 427-440 (2019).
6.
go back to reference A. L. Leão, B. M. Cherian, S. Narine, S. F. Souza, M. Sain, and S. Thomas, in: O. Faruk and M. Sain, Biofiber reinforcements in composite materials, Ch. 7, Woodhead Publishing, Elsevier Ltd., U. K., 211-235 (2015). A. L. Leão, B. M. Cherian, S. Narine, S. F. Souza, M. Sain, and S. Thomas, in: O. Faruk and M. Sain, Biofiber reinforcements in composite materials, Ch. 7, Woodhead Publishing, Elsevier Ltd., U. K., 211-235 (2015).
7.
go back to reference R. Kumar, K. Kumar, S. Bhowmik, and G. Sarkhel, “Tailoring the performance of bamboo filler reinforced epoxy composite: insights into fracture properties and fracture mechanism,” J. Polym. Res., 26, No. 54, 1-15 (2019). R. Kumar, K. Kumar, S. Bhowmik, and G. Sarkhel, “Tailoring the performance of bamboo filler reinforced epoxy composite: insights into fracture properties and fracture mechanism,” J. Polym. Res., 26, No. 54, 1-15 (2019).
8.
go back to reference V. P. Arthanarieswaran, A. Kumaravel, M. Kathirselvam, and S. S. Saravanakumar, “Mechanical and thermal properties of Acacia leucophloea fiber/epoxy composites: Influence of fiber loading and alkali treatment,” Int. J. Polym. Anal. Charact., 21, No. 7, 571-583 (2016).CrossRef V. P. Arthanarieswaran, A. Kumaravel, M. Kathirselvam, and S. S. Saravanakumar, “Mechanical and thermal properties of Acacia leucophloea fiber/epoxy composites: Influence of fiber loading and alkali treatment,” Int. J. Polym. Anal. Charact., 21, No. 7, 571-583 (2016).CrossRef
9.
go back to reference R. Y. Miyahara, F. L. Melquiades, E. Ligowski, A. do Santos, S. L. Fávaro, and O. dos R. Antunes Junior, “Preparation and characterization of composites from plastic waste and sugar cane fiber,” Polímeros, 28, No. 2, 147-154 (2018). R. Y. Miyahara, F. L. Melquiades, E. Ligowski, A. do Santos, S. L. Fávaro, and O. dos R. Antunes Junior, “Preparation and characterization of composites from plastic waste and sugar cane fiber,” Polímeros, 28, No. 2, 147-154 (2018).
10.
go back to reference A. Y. Patil, N. R. Banapurmath, J. S. Yaradoddi, B. B. Kotturshettar, A. S. Shettar, G. D. Basavaraj, R. Keshavamurthy, T. M. Yunus Khan, and S. N. Mathad, “Experimental and simulation studies on waste vegetable peels as bio-composite fillers for light duty applications,” Arab. J. Sci. Eng., 44, No. 9, 7895-7907 (2019). A. Y. Patil, N. R. Banapurmath, J. S. Yaradoddi, B. B. Kotturshettar, A. S. Shettar, G. D. Basavaraj, R. Keshavamurthy, T. M. Yunus Khan, and S. N. Mathad, “Experimental and simulation studies on waste vegetable peels as bio-composite fillers for light duty applications,” Arab. J. Sci. Eng., 44, No. 9, 7895-7907 (2019).
11.
go back to reference M. M. Haque, M. S. Islam, and M. N. Islam, “Preparation and characterization of polypropylene composites reinforced with chemically treated coir,” J. Polym. Res., 19, No. 5, 1-8 (2012).CrossRef M. M. Haque, M. S. Islam, and M. N. Islam, “Preparation and characterization of polypropylene composites reinforced with chemically treated coir,” J. Polym. Res., 19, No. 5, 1-8 (2012).CrossRef
12.
go back to reference M. V. F. Ferreira, A. C. C. Neves, C. G. de Oliveira, F. P. D. Lopes, F. M. Margem, C. M. F. Vieira, and S. N. Monteiro, “Thermogravimetric characterization of polyester matrix composites reinforced with eucalyptus fibers,” J. Mater. Res. Technol., 6, No. 4, 396-400 (2017).CrossRef M. V. F. Ferreira, A. C. C. Neves, C. G. de Oliveira, F. P. D. Lopes, F. M. Margem, C. M. F. Vieira, and S. N. Monteiro, “Thermogravimetric characterization of polyester matrix composites reinforced with eucalyptus fibers,” J. Mater. Res. Technol., 6, No. 4, 396-400 (2017).CrossRef
13.
go back to reference K. M. F. Hasan, P. G. Horváth, and T. Alpár, “Thermomechanical behavior of methylene diphenyl diisocyanate-bonded flax/glass woven fabric reinforced laminated composites,” ACS Omega, 6, No. 9, 6124-6133 (2021).CrossRef K. M. F. Hasan, P. G. Horváth, and T. Alpár, “Thermomechanical behavior of methylene diphenyl diisocyanate-bonded flax/glass woven fabric reinforced laminated composites,” ACS Omega, 6, No. 9, 6124-6133 (2021).CrossRef
14.
go back to reference K. M. F. Hasan, P. G. Horváth, K. Zsolt, Z. Kóczán, M. Bak, A. Horváth, and T. Alpár, “Hemp/glass woven fabric reinforced laminated nanocomposites via in-situ synthesized silver nanoparticles from Tilia cordata leaf extract,” Compos. Interfaces, 28, 1-19 (2021). K. M. F. Hasan, P. G. Horváth, K. Zsolt, Z. Kóczán, M. Bak, A. Horváth, and T. Alpár, “Hemp/glass woven fabric reinforced laminated nanocomposites via in-situ synthesized silver nanoparticles from Tilia cordata leaf extract,” Compos. Interfaces, 28, 1-19 (2021).
15.
go back to reference S. Joshi, L. Drzal, A. Mohanty, and S. Arora, “Are natural fiber composites environmentally superior to glass fiber reinforced composites?,” Compos. Part A Appl. Sci. Manuf., 35, No. 3, 371-376 (2004).CrossRef S. Joshi, L. Drzal, A. Mohanty, and S. Arora, “Are natural fiber composites environmentally superior to glass fiber reinforced composites?,” Compos. Part A Appl. Sci. Manuf., 35, No. 3, 371-376 (2004).CrossRef
16.
go back to reference L. K. S. Pires, M. G. Grisotto, and R. F. Grisotto, “O uso de plantas da Amazônia na produção de bioprodutos para tratamentos de pele,” Rev. Investig. Biomédica, 9, No. 1, 78-88 (2017).CrossRef L. K. S. Pires, M. G. Grisotto, and R. F. Grisotto, “O uso de plantas da Amazônia na produção de bioprodutos para tratamentos de pele,” Rev. Investig. Biomédica, 9, No. 1, 78-88 (2017).CrossRef
17.
go back to reference P. C. A. S. Cedrim, E. M. A. Barros, and T. G. do Nascimento, “Propriedades antioxidantes do açaí (Euterpe oleracea) na síndrome metabólica,” Brazilian J. Food. Technol., 21, e2017092 (2018). P. C. A. S. Cedrim, E. M. A. Barros, and T. G. do Nascimento, “Propriedades antioxidantes do açaí (Euterpe oleracea) na síndrome metabólica,” Brazilian J. Food. Technol., 21, e2017092 (2018).
18.
go back to reference K. M. F. Hasan, P. G. Horváth, K. Zsolt, and T. Alpár, in: M. Sriariyanun, S. M. Rangappa, S. Siengchin, H. N. Dhakal (eds), Design and fabrication technology in biocomposite manufacturing, CRC Press, Boca Raton, USA, 157-188 (2021). K. M. F. Hasan, P. G. Horváth, K. Zsolt, and T. Alpár, in: M. Sriariyanun, S. M. Rangappa, S. Siengchin, H. N. Dhakal (eds), Design and fabrication technology in biocomposite manufacturing, CRC Press, Boca Raton, USA, 157-188 (2021).
19.
go back to reference K. M. F. Hasan, P. G. Horváth, Z. Kóczán, M. Bak, and T. Alpár, “Semi-dry technology-mediated coir fiber and Scots pine particle-reinforced sustainable cementitious composite panels,” Constr. Build Mater., 305, 124816 (2021).CrossRef K. M. F. Hasan, P. G. Horváth, Z. Kóczán, M. Bak, and T. Alpár, “Semi-dry technology-mediated coir fiber and Scots pine particle-reinforced sustainable cementitious composite panels,” Constr. Build Mater., 305, 124816 (2021).CrossRef
20.
go back to reference K. M. F. Hasan, P. G. Horváth, and T. Alpár, “Development of lignocellulosic fiber reinforced cement composite panels using semi-dry technology,” Cellulose, 28, No. 6, 3631-3645 (2021).CrossRef K. M. F. Hasan, P. G. Horváth, and T. Alpár, “Development of lignocellulosic fiber reinforced cement composite panels using semi-dry technology,” Cellulose, 28, No. 6, 3631-3645 (2021).CrossRef
21.
go back to reference S. Mahmud, K. M. F. Hasan, M. A. Jahid, K. Mohiuddin, R. Zhang, and J. Zhu, “Comprehensive review on plant fiberreinforced polymeric biocomposites,” J. Mater. Sci., 56, No. 12, 7231-7264 (2021).CrossRef S. Mahmud, K. M. F. Hasan, M. A. Jahid, K. Mohiuddin, R. Zhang, and J. Zhu, “Comprehensive review on plant fiberreinforced polymeric biocomposites,” J. Mater. Sci., 56, No. 12, 7231-7264 (2021).CrossRef
22.
go back to reference K. M. F. Hasan, P. G. Horváth, Z. Kóczán, and T. Alpár, “Thermo-mechanical properties of pretreated coir fiber and fibrous chips reinforced multilayered composites,” Sci. Rep., 11, 1-13 (2021).CrossRef K. M. F. Hasan, P. G. Horváth, Z. Kóczán, and T. Alpár, “Thermo-mechanical properties of pretreated coir fiber and fibrous chips reinforced multilayered composites,” Sci. Rep., 11, 1-13 (2021).CrossRef
23.
go back to reference K. M. F. Hasan, P. G. Horváth, G. Markó, and T. Alpár, “Thermomechanical characteristics of flax-woven-fabricreinforced poly(lactic acid) and polypropylene biocomposites,” Green Mater., ahead-of-print, 1-10 (2021). K. M. F. Hasan, P. G. Horváth, G. Markó, and T. Alpár, “Thermomechanical characteristics of flax-woven-fabricreinforced poly(lactic acid) and polypropylene biocomposites,” Green Mater., ahead-of-print, 1-10 (2021).
24.
go back to reference K. M. F. Hasan, P. G. Horváth, and T. Alpár, “Lignocellulosic fiber cement compatibility: A state of the art review,” J. Nat. Fibers, ahead-of-print, 1-26 (2021). K. M. F. Hasan, P. G. Horváth, and T. Alpár, “Lignocellulosic fiber cement compatibility: A state of the art review,” J. Nat. Fibers, ahead-of-print, 1-26 (2021).
25.
go back to reference L. Cuebas, J. A. Bertolini Neto, R. T. P. de Barros, A. O. T. Cordeiro, D. dos S. Rosa, and C. R. Martins, “The incorporation of untreated and alkali-treated banana fiber in SEBS composites,” Polímeros, 30, No. 4, e2020040 (2020). L. Cuebas, J. A. Bertolini Neto, R. T. P. de Barros, A. O. T. Cordeiro, D. dos S. Rosa, and C. R. Martins, “The incorporation of untreated and alkali-treated banana fiber in SEBS composites,” Polímeros, 30, No. 4, e2020040 (2020).
26.
go back to reference R. Quintana, J. W. Choi, K. Puebla, and R. Wicker, “Effects of build orientation on tensile strength for stereolithographymanufactured ASTM D-638 type I specimens,” Int. J. Adv. Manuf. Technol., 46, No. 1, 201-215 (2010).CrossRef R. Quintana, J. W. Choi, K. Puebla, and R. Wicker, “Effects of build orientation on tensile strength for stereolithographymanufactured ASTM D-638 type I specimens,” Int. J. Adv. Manuf. Technol., 46, No. 1, 201-215 (2010).CrossRef
27.
go back to reference A. M. Mertz, A. W. Mix, H. M. Baek, and A. J. Giacomin, “Understanding melt index and ASTM D1238,” J. Test. Eval., 41, No. 1, 20120161 (2013). A. M. Mertz, A. W. Mix, H. M. Baek, and A. J. Giacomin, “Understanding melt index and ASTM D1238,” J. Test. Eval., 41, No. 1, 20120161 (2013).
28.
go back to reference D. Petersen, R. Link, S. Schaeffer, R. Johnson, and W. Lewis, “Impact force comparison of polymers: Molded-notch versus cut-notch using the ASTM D256 IZOD impact test method,” J. Test. Eval., 26, No. 2, 151-156 (1998).CrossRef D. Petersen, R. Link, S. Schaeffer, R. Johnson, and W. Lewis, “Impact force comparison of polymers: Molded-notch versus cut-notch using the ASTM D256 IZOD impact test method,” J. Test. Eval., 26, No. 2, 151-156 (1998).CrossRef
29.
go back to reference Y. Nishiyama, P. Langan, and H. Chanzy, “Crystal structure and hydrogen bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction,” J. Am. Chem. Soc., 124, No. 31, 9074-9082 (2002).CrossRef Y. Nishiyama, P. Langan, and H. Chanzy, “Crystal structure and hydrogen bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction,” J. Am. Chem. Soc., 124, No. 31, 9074-9082 (2002).CrossRef
30.
go back to reference L. Segal, J. J. Creely, A. E. Martin, and C. M. Conrad, “An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer,” Text. Res. J., 29, No. 10, 786-794 (1959).CrossRef L. Segal, J. J. Creely, A. E. Martin, and C. M. Conrad, “An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer,” Text. Res. J., 29, No. 10, 786-794 (1959).CrossRef
31.
go back to reference S. de S. Barros, E. da S. Oliveira, W. A. G. Pessoa Jr, A. L. G. Rosas, A. E. M. de Freitas, M. S. de F. Lira, F. L. Calderaro, C. Saron, and F. A. de Freitas, “Sementes de açaí (Euterpe precatoria Mart.) como uma nova fonte alternativa de celulose: Extração e caracterização,” Res. Soc. Dev., 10, No. 7, e31110716661 (2021). S. de S. Barros, E. da S. Oliveira, W. A. G. Pessoa Jr, A. L. G. Rosas, A. E. M. de Freitas, M. S. de F. Lira, F. L. Calderaro, C. Saron, and F. A. de Freitas, “Sementes de açaí (Euterpe precatoria Mart.) como uma nova fonte alternativa de celulose: Extração e caracterização,” Res. Soc. Dev., 10, No. 7, e31110716661 (2021).
32.
go back to reference M. M. Biondo, L. Medeiros de Oliveira, S. X. Lima, A. de S. Carolino, A. L. Farias Rocha, J. P. da Silva, Y. L. Ruiz, V. M. Giacon, P. H. Campelo, and E. A. Sanches, “Chemically synthesized poly(o-methoxyaniline): Influence of counterions on the structural and electrical properties,” J. Mol. Struct., 1205, 127588 (2020). M. M. Biondo, L. Medeiros de Oliveira, S. X. Lima, A. de S. Carolino, A. L. Farias Rocha, J. P. da Silva, Y. L. Ruiz, V. M. Giacon, P. H. Campelo, and E. A. Sanches, “Chemically synthesized poly(o-methoxyaniline): Influence of counterions on the structural and electrical properties,” J. Mol. Struct., 1205, 127588 (2020).
33.
go back to reference L. Haile, “Study of recycling of waste high impact polystyrene (PS-HI) and polystyrene with flame retardant additives (PS-FR) co-polymers,” J. Text. Sci. Fash. Technol., 7, No. 4, 1-11 (2021). L. Haile, “Study of recycling of waste high impact polystyrene (PS-HI) and polystyrene with flame retardant additives (PS-FR) co-polymers,” J. Text. Sci. Fash. Technol., 7, No. 4, 1-11 (2021).
34.
go back to reference J. P. Siregar, M. S. Salit, M. Z. A. Rahman, and K. Z. H. M. Dahlan, “Thermogravimetric Analysis (TGA) and Differential Scanning Calometric (DSC) analysis of pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composites,” Pertanika J. Sci. Technol., 19, No. 1, 161-170 (2011). J. P. Siregar, M. S. Salit, M. Z. A. Rahman, and K. Z. H. M. Dahlan, “Thermogravimetric Analysis (TGA) and Differential Scanning Calometric (DSC) analysis of pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composites,” Pertanika J. Sci. Technol., 19, No. 1, 161-170 (2011).
35.
go back to reference H. Li, C. Cai, Y. Chen, and D. Jia, “Thermal and thermo-oxidative degradation of flame retardant high impact polystyrene with triphenyl phosphate and novolac epoxy resin,” J. Wuhan Univ. Technol. Sci. Ed., 22, 486-489 (2007).CrossRef H. Li, C. Cai, Y. Chen, and D. Jia, “Thermal and thermo-oxidative degradation of flame retardant high impact polystyrene with triphenyl phosphate and novolac epoxy resin,” J. Wuhan Univ. Technol. Sci. Ed., 22, 486-489 (2007).CrossRef
36.
go back to reference A. C. P. Lima, D. L. R. Bastos, M. A. Camarena, E. P. S. Bon, M. C. Cammarota, R. S. S. Teixeira, and M. L. E. Gutarra, “Physicochemical characterization of residual biomass (seed and fiber) from açaí (Euterpe oleracea) processing and assessment of the potential for energy production and bioproducts,” Biomass Convers. Biorefinery, 11, No. 3, 925-935 (2021).CrossRef A. C. P. Lima, D. L. R. Bastos, M. A. Camarena, E. P. S. Bon, M. C. Cammarota, R. S. S. Teixeira, and M. L. E. Gutarra, “Physicochemical characterization of residual biomass (seed and fiber) from açaí (Euterpe oleracea) processing and assessment of the potential for energy production and bioproducts,” Biomass Convers. Biorefinery, 11, No. 3, 925-935 (2021).CrossRef
37.
go back to reference M. A. Martins, L. H. C. Mattoso, and J. D. C. Pessoa, “Thermogravimetric evaluation of açaí fruit (Euterpe oleracea Mart.) agro industry waste,” Rev. Bras. Frutic., 31, No. 4,1150-1157 (2009).CrossRef M. A. Martins, L. H. C. Mattoso, and J. D. C. Pessoa, “Thermogravimetric evaluation of açaí fruit (Euterpe oleracea Mart.) agro industry waste,” Rev. Bras. Frutic., 31, No. 4,1150-1157 (2009).CrossRef
38.
go back to reference F. F. da C. Tavares, M. D. C. de Almeida, J. A. P. da Silva, L. L. Araújo, N. S. M. Cardozo, and R. M. C. Santana, “Thermal treatment of açaí (Euterpe oleracea) fiber for composite reinforcement,” Polímeros, 30, No. 1, 1-9, (2020). F. F. da C. Tavares, M. D. C. de Almeida, J. A. P. da Silva, L. L. Araújo, N. S. M. Cardozo, and R. M. C. Santana, “Thermal treatment of açaí (Euterpe oleracea) fiber for composite reinforcement,” Polímeros, 30, No. 1, 1-9, (2020).
39.
go back to reference J. A. R. Oliveira, L. H. S. Martins, A. Komesu, and R. Maciel Filho, “Evaluation of alkaline delignification (NaOH) of açaí seeds (Eutherpe oleracea) treated with H2SO4 dilute and effect on enzymatic hydrolysis,” Chem. Eng. Trans., 43, 499-504 (2015). J. A. R. Oliveira, L. H. S. Martins, A. Komesu, and R. Maciel Filho, “Evaluation of alkaline delignification (NaOH) of açaí seeds (Eutherpe oleracea) treated with H2SO4 dilute and effect on enzymatic hydrolysis,” Chem. Eng. Trans., 43, 499-504 (2015).
40.
go back to reference J. P. Soares, J. E. Santos, G. O. Chierice, and E. T. G. Cavalheiro, “Thermal behavior of alginic acid and its sodium salt,” Eclet. Quim., 29, No. 2, 57-63 (2004).CrossRef J. P. Soares, J. E. Santos, G. O. Chierice, and E. T. G. Cavalheiro, “Thermal behavior of alginic acid and its sodium salt,” Eclet. Quim., 29, No. 2, 57-63 (2004).CrossRef
41.
go back to reference V. Fiore, G. Di Bella, and A. Valenza, “The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites,” Compos. Part B Eng., 68, No. 1, 14-21 (2015).CrossRef V. Fiore, G. Di Bella, and A. Valenza, “The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites,” Compos. Part B Eng., 68, No. 1, 14-21 (2015).CrossRef
42.
go back to reference A. de Lima Mesquita, N. G. Barrero, J. Fiorelli, A. L. Christoforo, L. J. G. De Faria, and F. A. R. Lahr, “Eco-particleboard manufactured from chemically treated fibrous vascular tissue of acai (Euterpe oleracea Mart.) fruit: A new alternative for the particleboard industry with its potential application in civil construction and furniture,” Ind. Crops Prod., 112, 644-651 (2018). A. de Lima Mesquita, N. G. Barrero, J. Fiorelli, A. L. Christoforo, L. J. G. De Faria, and F. A. R. Lahr, “Eco-particleboard manufactured from chemically treated fibrous vascular tissue of acai (Euterpe oleracea Mart.) fruit: A new alternative for the particleboard industry with its potential application in civil construction and furniture,” Ind. Crops Prod., 112, 644-651 (2018).
43.
go back to reference J. T. Kim and A. N. Netravali, “Mercerization of sisal fibers: Effect of tension on mechanical properties of sisal fiber and fiber-reinforced composites,” Compos. Part A Appl. Sci. Manuf., 41, No. 9, 1245-1252 (2010).CrossRef J. T. Kim and A. N. Netravali, “Mercerization of sisal fibers: Effect of tension on mechanical properties of sisal fiber and fiber-reinforced composites,” Compos. Part A Appl. Sci. Manuf., 41, No. 9, 1245-1252 (2010).CrossRef
44.
go back to reference E. B. C. Santos, C. G. Moreno, J. J. P. Barros, D. A. de Moura, F. de C. Fim, A. Ries, R. M. R. Wellen, and L. B. da Silva, “Effect of alkaline and hot water treatments on the structure and morphology of piassava fibers,” Mater. Res., 21, No. 2, e20170365 (2018). E. B. C. Santos, C. G. Moreno, J. J. P. Barros, D. A. de Moura, F. de C. Fim, A. Ries, R. M. R. Wellen, and L. B. da Silva, “Effect of alkaline and hot water treatments on the structure and morphology of piassava fibers,” Mater. Res., 21, No. 2, e20170365 (2018).
45.
go back to reference S. Kalia, B. S. Kaith, and I. Kaur, “Pretreatments of natural fibers and their application as reinforcing material in polymer composites: A review,” Polym. Eng. Sci., 49, No. 7, 1253-1272 (2009).CrossRef S. Kalia, B. S. Kaith, and I. Kaur, “Pretreatments of natural fibers and their application as reinforcing material in polymer composites: A review,” Polym. Eng. Sci., 49, No. 7, 1253-1272 (2009).CrossRef
46.
go back to reference L. Y. Mwaikambo and M. P. Ansell, “Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization,” J. Appl. Polym. Sci., 84, No. 12, 2222-2234 (2002).CrossRef L. Y. Mwaikambo and M. P. Ansell, “Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization,” J. Appl. Polym. Sci., 84, No. 12, 2222-2234 (2002).CrossRef
47.
go back to reference M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, “Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview,” Compos. Part B Eng., 43, No. 7, 2883-2892 (2012).CrossRef M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, “Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview,” Compos. Part B Eng., 43, No. 7, 2883-2892 (2012).CrossRef
48.
go back to reference L. J. da Silva, T. H. Panzera, A. L. Christoforo, J. C. C. Rubio, and F. Scarpa, “Micromechanical analysis of hybrid composites reinforced with unidirectional natural fibres, silica microparticles and maleic anhydride,” Mater. Res., 15, No. 6, 1003-1012 (2012).CrossRef L. J. da Silva, T. H. Panzera, A. L. Christoforo, J. C. C. Rubio, and F. Scarpa, “Micromechanical analysis of hybrid composites reinforced with unidirectional natural fibres, silica microparticles and maleic anhydride,” Mater. Res., 15, No. 6, 1003-1012 (2012).CrossRef
49.
go back to reference V. S. Sreenivasan, N. Rajini, A. Alavudeen, and V. Arumugaprabu, “Dynamic mechanical and thermo-gravimetric analysis of Sansevieria cylindrica/polyester composite: Effect of fiber length, fiber loading and chemical treatment,” Compos. Part B Eng., 69, 76-86 (2015).CrossRef V. S. Sreenivasan, N. Rajini, A. Alavudeen, and V. Arumugaprabu, “Dynamic mechanical and thermo-gravimetric analysis of Sansevieria cylindrica/polyester composite: Effect of fiber length, fiber loading and chemical treatment,” Compos. Part B Eng., 69, 76-86 (2015).CrossRef
50.
go back to reference M. N. Akhtar, A. B. Sulong, M. K. F. Radzi, N. F. Ismail, M. R. Raza, N. Muhamad, and M. A. Khan, “Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications,” Prog. Nat. Sci. Mater. Int., 26, No. 6, 657-664 (2016).CrossRef M. N. Akhtar, A. B. Sulong, M. K. F. Radzi, N. F. Ismail, M. R. Raza, N. Muhamad, and M. A. Khan, “Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications,” Prog. Nat. Sci. Mater. Int., 26, No. 6, 657-664 (2016).CrossRef
51.
go back to reference D. Bolcu and M. M. Stănescu, “A study of the mechanical properties of composite materials with a dammar-based hybrid matrix and two types of flax fabric reinforcement,” Polymers, 12, No. 8, 1649 (2020). D. Bolcu and M. M. Stănescu, “A study of the mechanical properties of composite materials with a dammar-based hybrid matrix and two types of flax fabric reinforcement,” Polymers, 12, No. 8, 1649 (2020).
52.
go back to reference C. D. P. da C. Castro, C. G. B. T. Dias, and J. de A. F. Faria, “Production and evaluation of recycled polymers from açaí fibers,” Mater. Res., 13, No. 2, 159-163 (2010). C. D. P. da C. Castro, C. G. B. T. Dias, and J. de A. F. Faria, “Production and evaluation of recycled polymers from açaí fibers,” Mater. Res., 13, No. 2, 159-163 (2010).
53.
go back to reference P. Antich, A. Vázquez, I. Mondragon, and C. Bernal, “Mechanical behavior of high impact polystyrene reinforced with short sisal fibers,” Compos. Part A Appl. Sci. Manuf., 37, No. 1, 139-150 (2006).CrossRef P. Antich, A. Vázquez, I. Mondragon, and C. Bernal, “Mechanical behavior of high impact polystyrene reinforced with short sisal fibers,” Compos. Part A Appl. Sci. Manuf., 37, No. 1, 139-150 (2006).CrossRef
54.
go back to reference L. A. Granda, F. X. Espinach, J. A. Méndez, F. Vilaseca, M. Delgado-Aguilar, and P. Mutjé, “Semichemical fibres of Leucaena collinsii reinforced polypropylene composites: Flexural characterisation, impact behaviour and water uptake properties,” Compos. Part B Eng., 97, No. C, 176-182 (2016). L. A. Granda, F. X. Espinach, J. A. Méndez, F. Vilaseca, M. Delgado-Aguilar, and P. Mutjé, “Semichemical fibres of Leucaena collinsii reinforced polypropylene composites: Flexural characterisation, impact behaviour and water uptake properties,” Compos. Part B Eng., 97, No. C, 176-182 (2016).
55.
go back to reference P. M. McGenity, J. J. Hooper, C. D. Paynter, A. M. Riley, C. Nutbeem, N. J. Elton, and J. M. Adams, “Nucleation and crystallization of polypropylene by mineral fillers: Relationship to impact strength,” Polymer, 33, No. 24, 5215-5224 (1992).CrossRef P. M. McGenity, J. J. Hooper, C. D. Paynter, A. M. Riley, C. Nutbeem, N. J. Elton, and J. M. Adams, “Nucleation and crystallization of polypropylene by mineral fillers: Relationship to impact strength,” Polymer, 33, No. 24, 5215-5224 (1992).CrossRef
56.
go back to reference M. V. G. Zimmermann, T. C. Turella, A. J. Zattera, and R. M. C. Santana, “Influência do tratamento químico da fibra de bananeira em compósitos de poli(etileno-co-acetato de vinila) com e sem agente de expansão,” Polímeros, 1, No. 1, 58-64 (2014).CrossRef M. V. G. Zimmermann, T. C. Turella, A. J. Zattera, and R. M. C. Santana, “Influência do tratamento químico da fibra de bananeira em compósitos de poli(etileno-co-acetato de vinila) com e sem agente de expansão,” Polímeros, 1, No. 1, 58-64 (2014).CrossRef
57.
go back to reference R. G. Raj, B. V. Kokta, D. Maldas, and C. Daneault, “Use of wood fibers in thermoplastic composites.VI. Isocyanate as a bonding agent for polyethylene-wood fiber composites,” Polym. Compos., 9, No. 6, 404-411 (1988).CrossRef R. G. Raj, B. V. Kokta, D. Maldas, and C. Daneault, “Use of wood fibers in thermoplastic composites.VI. Isocyanate as a bonding agent for polyethylene-wood fiber composites,” Polym. Compos., 9, No. 6, 404-411 (1988).CrossRef
58.
go back to reference C. H. Wataya, R. A. Lima, R. R. Oliveira, and E. A. B. Moura, in: J. S. Carpenter, C. Bai, J. P. Escobedo, J. Y. Hwang, S. Ikhmayies, B. Li, J. Li, S. N. Monteiro, Z. Peng and M. Zhang (eds), Mechanical, Morphological and Thermal Properties of Açaí Fibers Reinforced Biodegradable Polymer Composites, Wiley, New York, USA, 265-272 (2015). C. H. Wataya, R. A. Lima, R. R. Oliveira, and E. A. B. Moura, in: J. S. Carpenter, C. Bai, J. P. Escobedo, J. Y. Hwang, S. Ikhmayies, B. Li, J. Li, S. N. Monteiro, Z. Peng and M. Zhang (eds), Mechanical, Morphological and Thermal Properties of Açaí Fibers Reinforced Biodegradable Polymer Composites, Wiley, New York, USA, 265-272 (2015).
Metadata
Title
Ecocomposites Based on High-Impact Polystyrene (HIPS) and Amazon Açaí (Euterpe oleracea) Fibers: Influence of NaOH Treatment on Its Structural, Thermal, and Mechanical Properties
Authors
E. C. Silva
A. F. da Silva
Y. S. da Rodrigues
D. S. Correia Júnior
L. M. de Oliveira
M. M. Biondo
P. H. C. Felix
H. B. E. Sales
E. A. Sanches
Publication date
13-03-2023
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 1/2023
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10087-w

Other articles of this Issue 1/2023

Mechanics of Composite Materials 1/2023 Go to the issue

Premium Partners