Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

01-12-2014 | Issue 3/2014

Journal of Scientific Computing 3/2014

Edge Detection from Non-Uniform Fourier Data Using the Convolutional Gridding Algorithm

Journal:
Journal of Scientific Computing > Issue 3/2014
Authors:
Adam Martinez, Anne Gelb, Alexander Gutierrez
Important notes
This work is supported in part by grants NSF-DMS 1216559 and AFOSR 12004863.

Abstract

Detecting edges in images from a finite sampling of Fourier data is important in a variety of applications. For example, internal edge information can be used to identify tissue boundaries of the brain in a magnetic resonance imaging (MRI) scan, which is an essential part of clinical diagnosis. Likewise, it can also be used to identify targets from synthetic aperture radar data. Edge information is also critical in determining regions of smoothness so that high resolution reconstruction algorithms, i.e. those that do not “smear over” the internal boundaries of an image, can be applied. In some applications, such as MRI, the sampling patterns may be designed to oversample the low frequency while more sparsely sampling the high frequency modes. This type of non-uniform sampling creates additional difficulties in processing the image. In particular, there is no fast reconstruction algorithm, since the FFT is not applicable. However, interpolating such highly non-uniform Fourier data to the uniform coefficients (so that the FFT can be employed) may introduce large errors in the high frequency modes, which is especially problematic for edge detection. Convolutional gridding, also referred to as the non-uniform FFT, is a forward method that uses a convolution process to obtain uniform Fourier data so that the FFT can be directly applied to recover the underlying image. Carefully chosen parameters ensure that the algorithm retains accuracy in the high frequency coefficients. Similarly, the convolutional gridding edge detection algorithm developed in this paper provides an efficient and robust way to calculate edges. We demonstrate our technique in one and two dimensional examples.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 3/2014

Journal of Scientific Computing 3/2014 Go to the issue

Premium Partner

    Image Credits