Skip to main content
Top

2018 | OriginalPaper | Chapter

11. Edit Distance for Pulse Diagnosis

Authors : David Zhang, Wangmeng Zuo, Peng Wang

Published in: Computational Pulse Signal Analysis

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, by referring to the edit distance with real penalty (ERP) and the recent progress in k-nearest neighbors (KNN) classifiers, we propose two novel ERP-based KNN classifiers. Taking advantage of the metric property of ERP, we first develop an ERP-induced inner product and a Gaussian ERP kernel, then embed them into difference-weighted KNN classifiers, and finally develop two novel classifiers for pulse waveform classification. The experimental results show that the proposed classifiers are effective for accurate classification of pulse waveform.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Z. Li, Pulse Diagnosis, Paradigm Press, 1985. S. Z. Li, Pulse Diagnosis, Paradigm Press, 1985.
2.
go back to reference H. Dickhaus and H. Heinrich, “Classifying biosignals with wavelet networks: a method for noninvasive diagnosis, ” IEEE Engineering in Medicine and Biology Magazine, vol. 15, no. 5, pp. 103–111, 1996.CrossRef H. Dickhaus and H. Heinrich, “Classifying biosignals with wavelet networks: a method for noninvasive diagnosis, ” IEEE Engineering in Medicine and Biology Magazine, vol. 15, no. 5, pp. 103–111, 1996.CrossRef
3.
go back to reference H. Adeli, S. Ghosh-Dastidar, and N. Dadmehr, “A wavelet- chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy, ” IEEE Transactions on Biomedical Engineering, vol. 54, no. 2, pp. 205–211, 2007.CrossRef H. Adeli, S. Ghosh-Dastidar, and N. Dadmehr, “A wavelet- chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy, ” IEEE Transactions on Biomedical Engineering, vol. 54, no. 2, pp. 205–211, 2007.CrossRef
4.
go back to reference H. Wang and Y. Cheng, “A quantitative system for pulse diagnosis in traditional Chinese medicine,” in Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society (EMBS ‘05), pp. 5676–5679, September 2005. H. Wang and Y. Cheng, “A quantitative system for pulse diagnosis in traditional Chinese medicine,” in Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society (EMBS ‘05), pp. 5676–5679, September 2005.
5.
go back to reference S. E. Fu and S. P. Lai, “A system for pulse measurement and analysis of Chinese medicine, ” in Proceedings of the 11th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1695–1696, November 1989. S. E. Fu and S. P. Lai, “A system for pulse measurement and analysis of Chinese medicine, ” in Proceedings of the 11th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1695–1696, November 1989.
6.
go back to reference J. Lee, J. Kim, and M. Lee, “Design of digital hardware system for pulse signals, ” Journal of Medical Systems, vol. 25, no. 6, pp. 385–394, 2001.CrossRef J. Lee, J. Kim, and M. Lee, “Design of digital hardware system for pulse signals, ” Journal of Medical Systems, vol. 25, no. 6, pp. 385–394, 2001.CrossRef
7.
go back to reference W. Ran, J. I. Jae, and H. P. Sung, “Estimation of central blood pressure using radial pulse waveform,” in Proceedings of the International Symposium on Information Technology Convergence (ISITC ‘07), pp. 250–253, November 2007. W. Ran, J. I. Jae, and H. P. Sung, “Estimation of central blood pressure using radial pulse waveform,” in Proceedings of the International Symposium on Information Technology Convergence (ISITC ‘07), pp. 250–253, November 2007.
8.
go back to reference R. Leca and V. Groza, “Hypertension detection using standard pulse waveform processing,” in Proceedings of IEEE Instrumentation and Measurement Technology Conference (IMTC ‘05), pp. 400–405, May 2005. R. Leca and V. Groza, “Hypertension detection using standard pulse waveform processing,” in Proceedings of IEEE Instrumentation and Measurement Technology Conference (IMTC ‘05), pp. 400–405, May 2005.
9.
go back to reference C.-C. Tyan, S.-H. Liu, J.-Y. Chen, J.-J. Chen, and W.-M. Liang, “A novel noninvasive measurement technique for analyzing the pressure pulse waveform of the radial artery,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 1, pp. 288–297, 2008.CrossRef C.-C. Tyan, S.-H. Liu, J.-Y. Chen, J.-J. Chen, and W.-M. Liang, “A novel noninvasive measurement technique for analyzing the pressure pulse waveform of the radial artery,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 1, pp. 288–297, 2008.CrossRef
10.
go back to reference L. Xu, D. Zhang, and K. Wang, “Wavelet-based cascaded adaptive filter for removing baseline drift in pulse waveforms,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 11, pp. 1973–1975, 2005.CrossRef L. Xu, D. Zhang, and K. Wang, “Wavelet-based cascaded adaptive filter for removing baseline drift in pulse waveforms,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 11, pp. 1973–1975, 2005.CrossRef
11.
go back to reference C. Xia, Y. Li, J. Yan et al., “A practical approach to wrist pulse segmentation and single-period average waveform estimation,” in Proceedings of the 1st International Conference on BioMedical Engineering and Informatics (BMEI ‘08), pp. 334–338, May 2008. C. Xia, Y. Li, J. Yan et al., “A practical approach to wrist pulse segmentation and single-period average waveform estimation,” in Proceedings of the 1st International Conference on BioMedical Engineering and Informatics (BMEI ‘08), pp. 334–338, May 2008.
12.
go back to reference H. Yang, Q. Zhou, and J. Xiao, “Relationship between vascular elasticity and human pulse waveform based on FFT analysis of pulse waveform with different age,” in Proceedings of the International Conference on Bioinformatics and Biomedical Engineering, pp. 1–4, 2009. H. Yang, Q. Zhou, and J. Xiao, “Relationship between vascular elasticity and human pulse waveform based on FFT analysis of pulse waveform with different age,” in Proceedings of the International Conference on Bioinformatics and Biomedical Engineering, pp. 1–4, 2009.
13.
go back to reference Q.-L. Guo, K.-Q. Wang, D.-Y. Zhang, and N.-M. Li, “A wavelet packet based pulse waveform analysis for cholecystitis and nephrotic syndrome diagnosis,” in Proceedings of the International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR ‘08), pp. 513–517, August 2008. Q.-L. Guo, K.-Q. Wang, D.-Y. Zhang, and N.-M. Li, “A wavelet packet based pulse waveform analysis for cholecystitis and nephrotic syndrome diagnosis,” in Proceedings of the International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR ‘08), pp. 513–517, August 2008.
14.
go back to reference P.-Y. Zhang and H.-Y. Wang, “A framework for automatic time-domain characteristic parameters extraction of human pulse signals,” EURASIP Journal on Advances in Signal Processing, vol. 2008, Article ID 468390, 9 pages, 2008. P.-Y. Zhang and H.-Y. Wang, “A framework for automatic time-domain characteristic parameters extraction of human pulse signals,” EURASIP Journal on Advances in Signal Processing, vol. 2008, Article ID 468390, 9 pages, 2008.
15.
go back to reference L. Xu, D. Zhang, K. Wang, and L. Wang, “Arrhythmic pulses detection using Lempel-Ziv complexity analysis,” EURASIP Journal on Applied Signal Processing, vol. 2006, Article ID 18268, 12 pages, 2006. L. Xu, D. Zhang, K. Wang, and L. Wang, “Arrhythmic pulses detection using Lempel-Ziv complexity analysis,” EURASIP Journal on Applied Signal Processing, vol. 2006, Article ID 18268, 12 pages, 2006.
16.
go back to reference J.-J. Shu and Y. Sun, “Developing classification indices for Chinese pulse diagnosis,” Complementary Therapies in Medicine, vol. 15, no. 3, pp. 190–198, 2007.CrossRef J.-J. Shu and Y. Sun, “Developing classification indices for Chinese pulse diagnosis,” Complementary Therapies in Medicine, vol. 15, no. 3, pp. 190–198, 2007.CrossRef
17.
go back to reference J. Allen and A. Murray, “Comparison of three arterial pulse waveform classification techniques,” Journal of Medical Engineering and Technology, vol. 20, no. 3, pp. 109–114, 1996.CrossRef J. Allen and A. Murray, “Comparison of three arterial pulse waveform classification techniques,” Journal of Medical Engineering and Technology, vol. 20, no. 3, pp. 109–114, 1996.CrossRef
18.
go back to reference L. Xu, M. Q.-H. Meng, K. Wang, W. Lu, and N. Li, “Pulse images recognition using fuzzy neural network, ” Expert Systems with Applications, vol. 36, no. 2, pp. 3805–3811, 2009.CrossRef L. Xu, M. Q.-H. Meng, K. Wang, W. Lu, and N. Li, “Pulse images recognition using fuzzy neural network, ” Expert Systems with Applications, vol. 36, no. 2, pp. 3805–3811, 2009.CrossRef
19.
go back to reference L. Wang, K.-Q. Wang, and L.-S. Xu, “Recognizing wrist pulse waveforms with improved dynamic time warping algorithm, ” in Proceedings of the International Conference on Machine Learning and Cybernetics, pp. 3644–3649, August 2004. L. Wang, K.-Q. Wang, and L.-S. Xu, “Recognizing wrist pulse waveforms with improved dynamic time warping algorithm, ” in Proceedings of the International Conference on Machine Learning and Cybernetics, pp. 3644–3649, August 2004.
20.
go back to reference J. Lee, “The systematical analysis of oriental pulse waveform: a practical approach,” Journal of Medical Systems, vol. 32, no. 1, pp. 9–15, 2008.CrossRef J. Lee, “The systematical analysis of oriental pulse waveform: a practical approach,” Journal of Medical Systems, vol. 32, no. 1, pp. 9–15, 2008.CrossRef
21.
go back to reference C. Chiu, B. Liau, S. Yeh, and C. Hsu, “Artificial neural networks classification of arterial pulse waveforms in cardiovascular diseases,” in Proceedings of the 4th Kuala Lumpur International Conference on Biomedical Engineering, Springer, 2008. C. Chiu, B. Liau, S. Yeh, and C. Hsu, “Artificial neural networks classification of arterial pulse waveforms in cardiovascular diseases,” in Proceedings of the 4th Kuala Lumpur International Conference on Biomedical Engineering, Springer, 2008.
22.
go back to reference H. Wang and P. Zhang, “A quantitative method for pulse strength classification based on decision tree,” Journal of Software, vol. 4, no. 4, pp. 323–330, 2009. H. Wang and P. Zhang, “A quantitative method for pulse strength classification based on decision tree,” Journal of Software, vol. 4, no. 4, pp. 323–330, 2009.
23.
go back to reference L. S. Xu, K. Q. Wang, and L. Wang, “Pulse waveforms classification based on wavelet network,” in Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society (EMBS ‘05), pp. 4596–4599, September 2005. L. S. Xu, K. Q. Wang, and L. Wang, “Pulse waveforms classification based on wavelet network,” in Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society (EMBS ‘05), pp. 4596–4599, September 2005.
24.
go back to reference B. Yi, H. V. Jagadish, and C. Faloutsos, “Efficient retrieval of similar time sequences under time warping,” in Proceedings of the 14th International Conference on Data Engineering, pp. 201–208, February 1998. B. Yi, H. V. Jagadish, and C. Faloutsos, “Efficient retrieval of similar time sequences under time warping,” in Proceedings of the 14th International Conference on Data Engineering, pp. 201–208, February 1998.
25.
go back to reference L. Chen and R. Ng, “On the marriage of Lp-norms and edit distance,” in Proceeding of the 30th Very Large Data Bases Conference, pp. 792–801, 2004.CrossRef L. Chen and R. Ng, “On the marriage of Lp-norms and edit distance,” in Proceeding of the 30th Very Large Data Bases Conference, pp. 792–801, 2004.CrossRef
26.
go back to reference W. Zuo, D. Zhang, and K. Wang, “On kernel difference weighted k-nearest neighbor classification,” Pattern Analysis and Applications, vol. 11, no. 3–4, pp. 247–257, 2008.MathSciNetCrossRef W. Zuo, D. Zhang, and K. Wang, “On kernel difference weighted k-nearest neighbor classification,” Pattern Analysis and Applications, vol. 11, no. 3–4, pp. 247–257, 2008.MathSciNetCrossRef
27.
go back to reference M. R. Gupta, R. M. Gray, and R. A. Olshen, “Nonparametric supervised learning by linear interpolation with maximum entropy,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 5, pp. 766–781, 2006.CrossRef M. R. Gupta, R. M. Gray, and R. A. Olshen, “Nonparametric supervised learning by linear interpolation with maximum entropy,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 5, pp. 766–781, 2006.CrossRef
28.
go back to reference B. Schölkopf and A. J. Smola, Learning with Kernels, MIT Press, Cambridge, Mass, USA, 2002. B. Schölkopf and A. J. Smola, Learning with Kernels, MIT Press, Cambridge, Mass, USA, 2002.
Metadata
Title
Edit Distance for Pulse Diagnosis
Authors
David Zhang
Wangmeng Zuo
Peng Wang
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-4044-3_11

Premium Partner