Skip to main content
Top
Published in:

23-07-2024

Editorial: What AI and Neuroscience Can Learn from Each Other—Open Problems in Models and Theories

Authors: Asim Roy, Ali A. Minai, Jean-Philippe Thivierge, Tsvi Achler, Juyang Weng

Published in: Cognitive Computation | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Excerpt

This was the objective of our special issue: …

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Achler T. What AI, neuroscience, and cognitive science can learn from each other: an embedded perspective. Cogn Comput. 2023;1–9. Achler T. What AI, neuroscience, and cognitive science can learn from each other: an embedded perspective. Cogn Comput. 2023;1–9.
2.
go back to reference Minai AA. Deep intelligence: what AI should learn from nature’s imagination. Cogn Comput. 2023;1–16 Minai AA. Deep intelligence: what AI should learn from nature’s imagination. Cogn Comput. 2023;1–16
3.
go back to reference Stratton P. Convolutionary, evolutionary, and revolutionary: what’s next for brains, bodies, and AI? Cogn Comput. 2023;1–8. Stratton P. Convolutionary, evolutionary, and revolutionary: what’s next for brains, bodies, and AI? Cogn Comput. 2023;1–8.
4.
go back to reference Thivierge JP, Giraud É, Lynn M. Toward a brain-inspired theory of artificial learning. Cogn Comput. 2023;1–8. Thivierge JP, Giraud É, Lynn M. Toward a brain-inspired theory of artificial learning. Cogn Comput. 2023;1–8.
5.
go back to reference Depannemaecker D, Pio-Lopez L, Gauld C. Does deep learning have epileptic seizures? on the modeling of the brain. Cogn Comput. 2023;1–7. Depannemaecker D, Pio-Lopez L, Gauld C.  Does deep learning have epileptic seizures? on the modeling of the brain. Cogn Comput. 2023;1–7.
6.
go back to reference Schilling M, Hammer B, Ohl FW, Ritter HJ, Wiskott L. Modularity in nervous systems—a key to efficient adaptivity for deep reinforcement learning. Cogn Comput. 2023;1–16. Schilling M, Hammer B, Ohl FW, Ritter HJ, Wiskott L. Modularity in nervous systems—a key to efficient adaptivity for deep reinforcement learning. Cogn Comput. 2023;1–16.
7.
go back to reference Monaco JD, Hwang GM. Neurodynamical computing at the information boundaries of intelligent systems. Cogn Comput. 2022;1–13. Monaco JD, Hwang GM. Neurodynamical computing at the information boundaries of intelligent systems. Cogn Comput. 2022;1–13.
8.
go back to reference Baladron J, Hamker FH. Re-thinking the organization of cortico-basal ganglia-thalamo-cortical loops. Cogn Comput. 2023;1–6. Baladron J, Hamker FH. Re-thinking the organization of cortico-basal ganglia-thalamo-cortical loops. Cogn Comput. 2023;1–6.
9.
go back to reference Garcia-Aguilar G. The strange and promising relationship between EEG and AI methods of analysis. Cogn Comput. 2023;1–9. Garcia-Aguilar G. The strange and promising relationship between EEG and AI methods of analysis. Cogn Comput. 2023;1–9.
10.
go back to reference Fernandez-Leon JA, Acosta GG. Uncovering the secrets of the concept of place in cognitive maps aided by artificial intelligence. Cogn Comput. 2022;1–11. Fernandez-Leon JA, Acosta GG. Uncovering the secrets of the concept of place in cognitive maps aided by artificial intelligence. Cogn Comput. 2022;1–11.
Metadata
Title
Editorial: What AI and Neuroscience Can Learn from Each Other—Open Problems in Models and Theories
Authors
Asim Roy
Ali A. Minai
Jean-Philippe Thivierge
Tsvi Achler
Juyang Weng
Publication date
23-07-2024
Publisher
Springer US
Published in
Cognitive Computation / Issue 5/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-024-10324-x

Premium Partner