Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 1/2017

06-08-2016 | Original Article

Effect of additives on particulate matter formation of solid biofuel blends from wood and straw

Authors: Isabel Höfer, Martin Kaltschmitt

Published in: Biomass Conversion and Biorefinery | Issue 1/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The combustion of solid biofuels is characterized by the formation of particulate matter emissions harmful to humans and the environment. Inorganic elements which are volatile under high temperatures (∼600–1200 °C) are emitted as vapor, then cooling down in the flue gas, and are re-sublimated and emitted as solid particulate matter emissions (fly ash). Thus, the objective of this paper is it to summarize the current knowledge of the forming mechanism of these particulate matter emissions taking place during the combustion of wood and straw, and bring the elements in particulate matter with the help of additive in a stable solid phase, so they stay in the bottom ash and are not emitted. Here, two different additives are tested, based on Al, Mg and Ca. Important in this respect is the knowledge of the chemical formations during the combustion process of the different ash-forming elements contained within solid biofuels. Therefore, the chemical binding forms of the ash-forming elements (Si, Al, Fe, Ca, Mg, Mn, Na, K, P, S, and Cl) within the solid biofuel are presented. Based on this, possible conversion products are discussed including theoretical calculated intermediates; this includes the chemical conversion pathway. On this basis, additives are identified based on the difference of the elemental composition of wood/straw blends to wood and the results of the formation of particulate matter during combustion are assessed in lab scale. The additives are composed of Al2O3, CaHPO4, and CaCO3 or Al2O3, MgHPO4, and MgCO3. The results from the characterization techniques TGA, AAS, IC, and XRD show that the formation of particulate matter during a complete thermo-chemical conversion can be suppressed to certain extend.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kaltschmitt M, Hartmann H, Hofbauer H (2016) Energie aus Biomasse: Grundlagen, Techniken und Verfahren, 3. aktualisierte. Springer, Berlin, HeidelbergCrossRef Kaltschmitt M, Hartmann H, Hofbauer H (2016) Energie aus Biomasse: Grundlagen, Techniken und Verfahren, 3. aktualisierte. Springer, Berlin, HeidelbergCrossRef
2.
go back to reference Döring S (2011) Pellets als Energieträger: Technologie und Anwendung. Springer, Berlin, HeidelbergCrossRef Döring S (2011) Pellets als Energieträger: Technologie und Anwendung. Springer, Berlin, HeidelbergCrossRef
3.
go back to reference Farrell AE, Gopal AR (2008) Bioenergy research needs for heat, electricity, and liquid fuels. MRS Bullet 33:373–380CrossRef Farrell AE, Gopal AR (2008) Bioenergy research needs for heat, electricity, and liquid fuels. MRS Bullet 33:373–380CrossRef
4.
go back to reference Demirbas A (2009) Biorefineries: current activities and future developments. Energy Convers Manag 50:2782–2801CrossRef Demirbas A (2009) Biorefineries: current activities and future developments. Energy Convers Manag 50:2782–2801CrossRef
5.
go back to reference Zhang L, Xu C, Champagne P (2010) Overview of recent advances in thermochemical conversion of biomass. Energy Convers Manag 51:969–982CrossRef Zhang L, Xu C, Champagne P (2010) Overview of recent advances in thermochemical conversion of biomass. Energy Convers Manag 51:969–982CrossRef
6.
go back to reference Schmitt VEM, Kaltschmitt M (2012) Pelletizing of wheat straw—how to influence mechanical–physical properties. Biofuels 3:35–46CrossRef Schmitt VEM, Kaltschmitt M (2012) Pelletizing of wheat straw—how to influence mechanical–physical properties. Biofuels 3:35–46CrossRef
7.
go back to reference Fouilland T, Grace JR, Ellis N (2010) Recent advances in fluidized bed technology in biomass processes. Biofuels 1:409–433CrossRef Fouilland T, Grace JR, Ellis N (2010) Recent advances in fluidized bed technology in biomass processes. Biofuels 1:409–433CrossRef
8.
go back to reference Steenari BM, Lundberg A, Pettersson H, Wilewska-Bien M, Andersson D (2009) Investigation of ash sintering during combustion of agricultural residues and the effect of additives. Energy Fuels 23:5655–5662CrossRef Steenari BM, Lundberg A, Pettersson H, Wilewska-Bien M, Andersson D (2009) Investigation of ash sintering during combustion of agricultural residues and the effect of additives. Energy Fuels 23:5655–5662CrossRef
9.
go back to reference Steenari BM, Lindqvist O (1998) High-temperature reactions of straw ash and the anti-sintering additives kaolin and dolomite. Biomass Bioenergy 14:67–76CrossRef Steenari BM, Lindqvist O (1998) High-temperature reactions of straw ash and the anti-sintering additives kaolin and dolomite. Biomass Bioenergy 14:67–76CrossRef
10.
go back to reference Gilbe C, Öhman M, Lindström E, Boström D, Backman R, Samuelsson R, Burvall J (2008) Slagging characteristics during residential combustion of biomass pellets. Energy Fuels 22:3536–3543CrossRef Gilbe C, Öhman M, Lindström E, Boström D, Backman R, Samuelsson R, Burvall J (2008) Slagging characteristics during residential combustion of biomass pellets. Energy Fuels 22:3536–3543CrossRef
11.
go back to reference Lindström E, Sandström M, Boström D, Öhman M (2007) Slagging characteristics during combustion of cereal grains rich in phosphorus. Energy Fuels 21:710–717CrossRef Lindström E, Sandström M, Boström D, Öhman M (2007) Slagging characteristics during combustion of cereal grains rich in phosphorus. Energy Fuels 21:710–717CrossRef
12.
go back to reference Arvelakis S, Gehrmann H, Beckman M, Koukios EG (2002) Effect of leaching on the ash behavior of olive residue during fluidized bed gasification. Biomass Bioenergy 22:55–69CrossRef Arvelakis S, Gehrmann H, Beckman M, Koukios EG (2002) Effect of leaching on the ash behavior of olive residue during fluidized bed gasification. Biomass Bioenergy 22:55–69CrossRef
13.
go back to reference Arvelakis S, Koukios EG (2002) Physicochemical upgrading of agroresidues as feedstocks for energy production via thermochemical conversion methods. Biomass Bioenergy 22:331–348CrossRef Arvelakis S, Koukios EG (2002) Physicochemical upgrading of agroresidues as feedstocks for energy production via thermochemical conversion methods. Biomass Bioenergy 22:331–348CrossRef
14.
go back to reference Fagerström J, Steinvall E, Boström D, Boman C (2016) Alkali transformation during single pellet combustion of soft wood and wheat straw. Fuel Processing Technology:204–212 Fagerström J, Steinvall E, Boström D, Boman C (2016) Alkali transformation during single pellet combustion of soft wood and wheat straw. Fuel Processing Technology:204–212
15.
go back to reference Selvakumaran P, Lawerence A, Bakthavatsalam AK (2014) Effect of additives on sintering of lignites during CFB combustion. Appl Therm Eng 2:480–488CrossRef Selvakumaran P, Lawerence A, Bakthavatsalam AK (2014) Effect of additives on sintering of lignites during CFB combustion. Appl Therm Eng 2:480–488CrossRef
16.
go back to reference Shoulaifar KT, DeMartini N, Zevenhoven M, Verhoeff F, Kiel J, Hupa M (2013) Ash-forming matter in torrefied birch wood: changes in chemical association. Energy Fuels 10:5684–5690CrossRef Shoulaifar KT, DeMartini N, Zevenhoven M, Verhoeff F, Kiel J, Hupa M (2013) Ash-forming matter in torrefied birch wood: changes in chemical association. Energy Fuels 10:5684–5690CrossRef
17.
go back to reference van Lith SC, Jensen PA, Frandsen FJ, Glarborg P (2008) Release to the gas phase of inorganic elements during wood combustion. Part 2: influence of fuel composition. Energy Fuels 3:1598–1609CrossRef van Lith SC, Jensen PA, Frandsen FJ, Glarborg P (2008) Release to the gas phase of inorganic elements during wood combustion. Part 2: influence of fuel composition. Energy Fuels 3:1598–1609CrossRef
18.
go back to reference Öhman M, Nordin A (2000) The role of kaolin in prevention of bed agglomerisation. Energy Fuels 14:618–624CrossRef Öhman M, Nordin A (2000) The role of kaolin in prevention of bed agglomerisation. Energy Fuels 14:618–624CrossRef
19.
go back to reference Wiinikka H, Grönberg C, Öhrman O, Boström D (2009) Influence of TiO2 additive on vaporization of potassium during straw combustion. Energy Fuels 11:5367–5374CrossRef Wiinikka H, Grönberg C, Öhrman O, Boström D (2009) Influence of TiO2 additive on vaporization of potassium during straw combustion. Energy Fuels 11:5367–5374CrossRef
20.
go back to reference Schmitt VEM, Kaltschmitt M (2013) Effect of straw proportion and Ca- and Al-containing additives on ash composition and sintering of wood–straw pellets. Fuel 109:551–558CrossRef Schmitt VEM, Kaltschmitt M (2013) Effect of straw proportion and Ca- and Al-containing additives on ash composition and sintering of wood–straw pellets. Fuel 109:551–558CrossRef
21.
go back to reference Wang L, Skjevrak G, Hustad JE, Grønli M, Skreiberg Ø (2012) Effects of additives on barley straw and husk ashes sintering characteristics. Energy Procedia 20:30–39CrossRef Wang L, Skjevrak G, Hustad JE, Grønli M, Skreiberg Ø (2012) Effects of additives on barley straw and husk ashes sintering characteristics. Energy Procedia 20:30–39CrossRef
22.
go back to reference Porbatzki D, Stemmler M, Müller M (2011) Release of inorganic trace elements during gasification of wood, straw, and miscanthus. Biomass Bioenergy, 79–86 Porbatzki D, Stemmler M, Müller M (2011) Release of inorganic trace elements during gasification of wood, straw, and miscanthus. Biomass Bioenergy, 79–86
23.
go back to reference Zevenhoven M, Yrjas P, Skrifvars BJ, Hupa M (2012) Characterization of ash-forming matter in various solid fuels by selective leaching and its implications for fluidized-bed combustion. Energy Fuels 10:6366–6386CrossRef Zevenhoven M, Yrjas P, Skrifvars BJ, Hupa M (2012) Characterization of ash-forming matter in various solid fuels by selective leaching and its implications for fluidized-bed combustion. Energy Fuels 10:6366–6386CrossRef
24.
go back to reference Wang L, Skjevrak G, Hustad JE, Grønli MG (2011) Effects of sewage sludge and marble sludge addition on slag characteristics during wood waste pellets combustion. Energy Fuels 25:5775–5785CrossRef Wang L, Skjevrak G, Hustad JE, Grønli MG (2011) Effects of sewage sludge and marble sludge addition on slag characteristics during wood waste pellets combustion. Energy Fuels 25:5775–5785CrossRef
25.
go back to reference Aho M (2001) Reduction of chlorine deposition in FB boilers with aluminium-containing additives. Fuel 80:1943–1951CrossRef Aho M (2001) Reduction of chlorine deposition in FB boilers with aluminium-containing additives. Fuel 80:1943–1951CrossRef
26.
go back to reference Iisa K, Lu Y, Salmenoja K (1999) Sulfation of potassium chloride at combustion conditions. Energy Fuels 13:1184–1190CrossRef Iisa K, Lu Y, Salmenoja K (1999) Sulfation of potassium chloride at combustion conditions. Energy Fuels 13:1184–1190CrossRef
27.
go back to reference Jiménez S, Ballester J (2005) Influence of operating conditions and the role of sulfur in the formation of aerosols from biomass combustion. Combust Flame 140:346–358CrossRef Jiménez S, Ballester J (2005) Influence of operating conditions and the role of sulfur in the formation of aerosols from biomass combustion. Combust Flame 140:346–358CrossRef
28.
go back to reference Jiménez S, Ballester J (2007) Formation of alkali sulphate aerosols in biomass combustion. Fuel 86:498CrossRef Jiménez S, Ballester J (2007) Formation of alkali sulphate aerosols in biomass combustion. Fuel 86:498CrossRef
29.
go back to reference Llorente MJF, Arocas PD, Nebot LG, García JEC (2008) The effect of the addition of chemical materials on the sintering of biomass ash. Fuel 87:2651–2658CrossRef Llorente MJF, Arocas PD, Nebot LG, García JEC (2008) The effect of the addition of chemical materials on the sintering of biomass ash. Fuel 87:2651–2658CrossRef
30.
go back to reference Pettersson A, Amand LE, Steenari BM (2009) Chemical fractionation for the characterisation of fly ashes from cocombustion of biofuels using different methods for alkali reduction. Fuel 88:1758–1772CrossRef Pettersson A, Amand LE, Steenari BM (2009) Chemical fractionation for the characterisation of fly ashes from cocombustion of biofuels using different methods for alkali reduction. Fuel 88:1758–1772CrossRef
31.
go back to reference Tobiasen L, Skytte R, Pedersen LS, Pedersen ST, Lindberg MA (2007) Deposit characteristic after injection of additives to a Danish straw-fired suspension boiler. Fuel Process Technol 88:1108–1117CrossRef Tobiasen L, Skytte R, Pedersen LS, Pedersen ST, Lindberg MA (2007) Deposit characteristic after injection of additives to a Danish straw-fired suspension boiler. Fuel Process Technol 88:1108–1117CrossRef
32.
go back to reference Tran KQ, Iisa K, Steenari BM, Lindqvist O (2003) A kinetic study of gaseous alkali capture by kaolin in the fixed bed reactor equipped with an alkali detector. Fuel 84:169–175CrossRef Tran KQ, Iisa K, Steenari BM, Lindqvist O (2003) A kinetic study of gaseous alkali capture by kaolin in the fixed bed reactor equipped with an alkali detector. Fuel 84:169–175CrossRef
33.
go back to reference Xiong S, Burvall J, Orberg H, Kalen G, Thyrel M, Öhman M, Boström D (2008) Slagging characteristics during combustion of corn stovers with and without kaolin and calcite. Energy Fuels 22:3465–3470CrossRef Xiong S, Burvall J, Orberg H, Kalen G, Thyrel M, Öhman M, Boström D (2008) Slagging characteristics during combustion of corn stovers with and without kaolin and calcite. Energy Fuels 22:3465–3470CrossRef
34.
go back to reference Wolf KJ, Smeda A, Müller M, Hilpert K (2005) Investigations on the influence of additives for SO2 reduction during high alkaline biomass combustion. Energy Fuel 19:820–824CrossRef Wolf KJ, Smeda A, Müller M, Hilpert K (2005) Investigations on the influence of additives for SO2 reduction during high alkaline biomass combustion. Energy Fuel 19:820–824CrossRef
35.
go back to reference Nultsch W (1982) Angewandte Botanik. Thieme, Stuttgart Nultsch W (1982) Angewandte Botanik. Thieme, Stuttgart
36.
go back to reference Enestam S, Mäkelä K, Backman R, Hupa M (2011) Occurrence of zinc and lead in aerosols and deposits in the fluidized-bed combustion of recovered waste wood. Part 2: thermodynamic considerations. Energy Fuels 25:1970–1977CrossRef Enestam S, Mäkelä K, Backman R, Hupa M (2011) Occurrence of zinc and lead in aerosols and deposits in the fluidized-bed combustion of recovered waste wood. Part 2: thermodynamic considerations. Energy Fuels 25:1970–1977CrossRef
37.
go back to reference Boström D, Skoglund N, Grimm A, Boman C, Öhman M, Broström M, Backman R (2012) Ash transformation chemistry during combustion of biomass. Energy Fuels 1:85–93CrossRef Boström D, Skoglund N, Grimm A, Boman C, Öhman M, Broström M, Backman R (2012) Ash transformation chemistry during combustion of biomass. Energy Fuels 1:85–93CrossRef
38.
go back to reference Werkelin J, Skrifvars BJ, Zevenhoven M, Holmbom B, Hupa M (2010) Chemical forms of ash-forming elements in woody biomass fuels. Fuel 2:481–493CrossRef Werkelin J, Skrifvars BJ, Zevenhoven M, Holmbom B, Hupa M (2010) Chemical forms of ash-forming elements in woody biomass fuels. Fuel 2:481–493CrossRef
39.
go back to reference Threfall T (2003) Structural and thermodynamic explanations of Ostwald’s rule. Org Process Res Dev 6:1017–1027CrossRef Threfall T (2003) Structural and thermodynamic explanations of Ostwald’s rule. Org Process Res Dev 6:1017–1027CrossRef
40.
go back to reference Ostwald W (1897) Über die Bildung und Umwandlung fester Körper, 1. Abhandlung: Übersättigung und Überkaltung. Zeitschrift für Physikalische Chemie 22:289–330 Ostwald W (1897) Über die Bildung und Umwandlung fester Körper, 1. Abhandlung: Übersättigung und Überkaltung. Zeitschrift für Physikalische Chemie 22:289–330
41.
go back to reference van Lith SC, Alosnso-Ramírez V, Jensen PA, Frandsen FJ, Glarborg P (2006) Release to the gas phase of inorganic elements during wood combustion. Part 1: development and evaluation of quantification methods. Energy Fuels 3:964–978CrossRef van Lith SC, Alosnso-Ramírez V, Jensen PA, Frandsen FJ, Glarborg P (2006) Release to the gas phase of inorganic elements during wood combustion. Part 1: development and evaluation of quantification methods. Energy Fuels 3:964–978CrossRef
42.
go back to reference Westberg HM, Byström M, Leckner B (2003) Distribution of potassium, chlorine, and sulfur between solid and vapor phases during combustion of wood chips and coal. Energy Fuels 1:18–28CrossRef Westberg HM, Byström M, Leckner B (2003) Distribution of potassium, chlorine, and sulfur between solid and vapor phases during combustion of wood chips and coal. Energy Fuels 1:18–28CrossRef
43.
go back to reference Wang L, Hustad JE, Skreiberg Ø, Skjevrak G, Grønli M (2012) A critical review on additives to reduce ash related operation problems in biomass combustion applications. Energy Procedia 20:20–29CrossRef Wang L, Hustad JE, Skreiberg Ø, Skjevrak G, Grønli M (2012) A critical review on additives to reduce ash related operation problems in biomass combustion applications. Energy Procedia 20:20–29CrossRef
44.
go back to reference Sommersacher P, Brunner T, Obernberger I (2012) Fuel indexes: a novel method for the evaluation of relevant combustion properties of new biomass fuels. Energy Fuels 1:380–390CrossRef Sommersacher P, Brunner T, Obernberger I (2012) Fuel indexes: a novel method for the evaluation of relevant combustion properties of new biomass fuels. Energy Fuels 1:380–390CrossRef
45.
go back to reference Obernberger I (2008) Aktuelle Forschungsergebnisse bei der Feinstaub- und NOx-Bildung bei der Verbrennung von Stroh. Internationale Fachtagung Strohenergie, Jena Obernberger I (2008) Aktuelle Forschungsergebnisse bei der Feinstaub- und NOx-Bildung bei der Verbrennung von Stroh. Internationale Fachtagung Strohenergie, Jena
46.
go back to reference Baxter LL (1998) Pollutant emission and deposit formation during combustion of biomass fuels. Lawrence Livermore Laboratory, Berkeley, CA, USA Baxter LL (1998) Pollutant emission and deposit formation during combustion of biomass fuels. Lawrence Livermore Laboratory, Berkeley, CA, USA
47.
go back to reference Boström M, Kassman H, Helgesson A, Berg M, Andersson C, Backman R, Nordin A (2007) Sulfation of corrosive alkali chlorides by ammonium sulfate in a biomass fired CFB boiler. Fuel Process Technol 88:1171–1177CrossRef Boström M, Kassman H, Helgesson A, Berg M, Andersson C, Backman R, Nordin A (2007) Sulfation of corrosive alkali chlorides by ammonium sulfate in a biomass fired CFB boiler. Fuel Process Technol 88:1171–1177CrossRef
48.
go back to reference Dayton DC, Frederick WJ (1996) Direct observation of alkali vapor release during biomass combustion and gasification. Energy Fuel 10:284–292CrossRef Dayton DC, Frederick WJ (1996) Direct observation of alkali vapor release during biomass combustion and gasification. Energy Fuel 10:284–292CrossRef
49.
go back to reference Dayton DC, Belle-Oudry D, Nordin A (1999) Effect of coal minerals on chlorine and alkali metals released during biomass/coal cofiring. Energy Fuel 13:1203–1211CrossRef Dayton DC, Belle-Oudry D, Nordin A (1999) Effect of coal minerals on chlorine and alkali metals released during biomass/coal cofiring. Energy Fuel 13:1203–1211CrossRef
50.
go back to reference Wang L, Skjevrak G, Hustad JE, Skreiberg Ø (2014) Investigation of biomass ash sintering characteristics and the effect of additives. Energy Fuels 1:208–218CrossRef Wang L, Skjevrak G, Hustad JE, Skreiberg Ø (2014) Investigation of biomass ash sintering characteristics and the effect of additives. Energy Fuels 1:208–218CrossRef
51.
go back to reference Wang L, Skreiberg Ø, Becidan M, Li H (2016) Investigation of rye straw ash sintering characteristics and the effect of additives. Appl Energy 162:1195–1204CrossRef Wang L, Skreiberg Ø, Becidan M, Li H (2016) Investigation of rye straw ash sintering characteristics and the effect of additives. Appl Energy 162:1195–1204CrossRef
52.
go back to reference Grimm A, Skoglund N, Boström D, Öhman M (2011) Bed agglomeration characteristics in fluidized quartz bed combustion of phosphorus-rich biomass fuels. Energy Fuels 25:937–947CrossRef Grimm A, Skoglund N, Boström D, Öhman M (2011) Bed agglomeration characteristics in fluidized quartz bed combustion of phosphorus-rich biomass fuels. Energy Fuels 25:937–947CrossRef
53.
go back to reference Aho M, Vainikka P, Taipale R, Yrjas P (2008) Effective new chemicals to prevent corrosion due to chlorine in power plant superheaters. Fuel 87:647–654CrossRef Aho M, Vainikka P, Taipale R, Yrjas P (2008) Effective new chemicals to prevent corrosion due to chlorine in power plant superheaters. Fuel 87:647–654CrossRef
54.
go back to reference Boman C, Boström D, Ohman M (2008) Effect of fuel additive sorbents (kaolin and calcite) on aerosol particle emission and characteristics during combustion of pelletized woody biomass. 2–6 June 2008. 16th European Biomass Conference & Exhibition, Valencia, Spain, pp 1514–1517 Boman C, Boström D, Ohman M (2008) Effect of fuel additive sorbents (kaolin and calcite) on aerosol particle emission and characteristics during combustion of pelletized woody biomass. 2–6 June 2008. 16th European Biomass Conference & Exhibition, Valencia, Spain, pp 1514–1517
55.
go back to reference Khalil RA, Todorovic D, Skreiberg O, Becidan M, Backman R, Goile F, Skreiberg A, Sørum L (2012) The effect of kaolin on the combustion of demolition wood under well-controlled conditions. Waste Manag Res 7:672–680CrossRef Khalil RA, Todorovic D, Skreiberg O, Becidan M, Backman R, Goile F, Skreiberg A, Sørum L (2012) The effect of kaolin on the combustion of demolition wood under well-controlled conditions. Waste Manag Res 7:672–680CrossRef
56.
go back to reference Mroczek K, Kalisz S, Pronobis M, Soltys J (2011) The effect of halloysite additive on operation of boilers firing agricultural biomass. Fuel Process Technol 92:845–855CrossRef Mroczek K, Kalisz S, Pronobis M, Soltys J (2011) The effect of halloysite additive on operation of boilers firing agricultural biomass. Fuel Process Technol 92:845–855CrossRef
57.
go back to reference Steenari BM, Karlfeldt Fedje K (2010) Addition of kaolin as potassium sorbent in the combustion of wood fuel—effects on fly ash properties. Fuel 8:2026–2032CrossRef Steenari BM, Karlfeldt Fedje K (2010) Addition of kaolin as potassium sorbent in the combustion of wood fuel—effects on fly ash properties. Fuel 8:2026–2032CrossRef
58.
go back to reference Ghaly AE, Ergüdenler A, Laufer E (1993) Agglomeration characteristics of alumina sand-straw ash mixtures at elevated temperatures. Biomass Bioenergy 6:467–480CrossRef Ghaly AE, Ergüdenler A, Laufer E (1993) Agglomeration characteristics of alumina sand-straw ash mixtures at elevated temperatures. Biomass Bioenergy 6:467–480CrossRef
59.
go back to reference Thy P, Jenkins BM, Grundvig S, Shiraki R, Lesher CE (2006) High temperature elemental losses and mineralogical changes in common biomass ashes. Fuel 85:783–795CrossRef Thy P, Jenkins BM, Grundvig S, Shiraki R, Lesher CE (2006) High temperature elemental losses and mineralogical changes in common biomass ashes. Fuel 85:783–795CrossRef
60.
go back to reference Wu H, Glarborg P, Frandsen FJ, Dam-Johansen K, Jensen PA (2011) Dust-firing of straw and additives: ash chemistry and deposition behavior. Energy Fuels 7:2862–2873CrossRef Wu H, Glarborg P, Frandsen FJ, Dam-Johansen K, Jensen PA (2011) Dust-firing of straw and additives: ash chemistry and deposition behavior. Energy Fuels 7:2862–2873CrossRef
61.
go back to reference Theis M, Mueller C, Skrifvars BJ, Hupa M, Tran H (2006) Deposition behaviour of model biofuel ash in mixtures with quartz sand. Part 1: experimental data. Fuel 85:1970–1978CrossRef Theis M, Mueller C, Skrifvars BJ, Hupa M, Tran H (2006) Deposition behaviour of model biofuel ash in mixtures with quartz sand. Part 1: experimental data. Fuel 85:1970–1978CrossRef
62.
go back to reference Thy P, Jenkins BM, Lesher CE, Grundvig S (2006) Compositional constraints on slag formation and potassium volatilization from rice straw blended wood fuel. Fuel Process Technol 87:383–408CrossRef Thy P, Jenkins BM, Lesher CE, Grundvig S (2006) Compositional constraints on slag formation and potassium volatilization from rice straw blended wood fuel. Fuel Process Technol 87:383–408CrossRef
63.
go back to reference Frandsen FJ (2005) Utilizing biomass and waste for power production—a decade of contributing to the understanding, interpretation and analysis of deposits and corrosion products. Fuel 84:1277–1294CrossRef Frandsen FJ (2005) Utilizing biomass and waste for power production—a decade of contributing to the understanding, interpretation and analysis of deposits and corrosion products. Fuel 84:1277–1294CrossRef
64.
go back to reference Baxter LL, Miles TR, Jenkins BM, Milne T, Dayton D, Bryers RW, Oden LL (1998) The behavior of inorganic material in biomass-fired power boilers: field and laboratory experiences. Fuel Process Technol 54:47–78CrossRef Baxter LL, Miles TR, Jenkins BM, Milne T, Dayton D, Bryers RW, Oden LL (1998) The behavior of inorganic material in biomass-fired power boilers: field and laboratory experiences. Fuel Process Technol 54:47–78CrossRef
65.
go back to reference Werther J, Saenger M, Hartge EU, Ogada T, Siagi Z (2000) Combustion of agricultural residues. Prog Energy Combust Sci 26:1–27CrossRef Werther J, Saenger M, Hartge EU, Ogada T, Siagi Z (2000) Combustion of agricultural residues. Prog Energy Combust Sci 26:1–27CrossRef
66.
go back to reference Tissari J, Sippula O, Torvela T, Lamberg H, Leskinen J, Karhunen T, Paukkunen S, Hirvonen MR, Jokiniemi J (2015) Zinc nanoparticle formation and physicochemical properties in wood combustion—experiments with zinc-doped pellets in a small-scale boiler. Fuel 143:404–413CrossRef Tissari J, Sippula O, Torvela T, Lamberg H, Leskinen J, Karhunen T, Paukkunen S, Hirvonen MR, Jokiniemi J (2015) Zinc nanoparticle formation and physicochemical properties in wood combustion—experiments with zinc-doped pellets in a small-scale boiler. Fuel 143:404–413CrossRef
67.
go back to reference Elled AL, Åmand L-E, Eskilsson D (2008) Fate of zinc during combustion of demolition wood in a fluidized bed boiler. Energy Fuels 3:1519–1526CrossRef Elled AL, Åmand L-E, Eskilsson D (2008) Fate of zinc during combustion of demolition wood in a fluidized bed boiler. Energy Fuels 3:1519–1526CrossRef
68.
go back to reference Enestam S, Mäkelä K, Backman R, Hupa M (2011) Occurrence of zinc and lead in aerosols and deposits in the fluidized-bed combustion of recovered waste wood. Part 2. Energy Fuels 5:1970–1977CrossRef Enestam S, Mäkelä K, Backman R, Hupa M (2011) Occurrence of zinc and lead in aerosols and deposits in the fluidized-bed combustion of recovered waste wood. Part 2. Energy Fuels 5:1970–1977CrossRef
69.
go back to reference Vassilev SV, Baxter D, Andersen L, Vassileva C, Morgan T (2012) An overview of the organic and inorganic phase composition of biomass. Fuel, 1–33 Vassilev SV, Baxter D, Andersen L, Vassileva C, Morgan T (2012) An overview of the organic and inorganic phase composition of biomass. Fuel, 1–33
70.
go back to reference Vassilev SV, Baxter D, Andersen L, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel, 913–933 Vassilev SV, Baxter D, Andersen L, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel, 913–933
71.
go back to reference Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2013) An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification. Fuel, 40–76 Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2013) An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification. Fuel, 40–76
72.
go back to reference Vassilev SV, Baxter D, Vassileva CG (2013) An overview of the behaviour of biomass during combustion: part I. Phase-mineral transformations of organic and inorganic matter. Fuel, 391–449 Vassilev SV, Baxter D, Vassileva CG (2013) An overview of the behaviour of biomass during combustion: part I. Phase-mineral transformations of organic and inorganic matter. Fuel, 391–449
73.
go back to reference American Society for Testing and Materials (ASTM) (2008) Standard test methods for instrumental determination of carbon, hydrogen, and nitrogen in laboratory samples of coal; ASTM Standard D5373-08. Annual Book of ASTM Standards, West Conshohocken, PA American Society for Testing and Materials (ASTM) (2008) Standard test methods for instrumental determination of carbon, hydrogen, and nitrogen in laboratory samples of coal; ASTM Standard D5373-08. Annual Book of ASTM Standards, West Conshohocken, PA
Metadata
Title
Effect of additives on particulate matter formation of solid biofuel blends from wood and straw
Authors
Isabel Höfer
Martin Kaltschmitt
Publication date
06-08-2016
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 1/2017
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-016-0217-7

Other articles of this Issue 1/2017

Biomass Conversion and Biorefinery 1/2017 Go to the issue