Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 12/2022

20-05-2022 | Technical Article

Effect of Aging on Transformation Behavior of Reverted Austenite and Toughness in Co-Free Maraging Stainless Steel

Authors: Chao Zhang, Chang Wang, Ao Wang, Chuanbo Zheng, Zhenbao Liu, Jianxiong Liang, Jie Su, Qilu Ge

Published in: Journal of Materials Engineering and Performance | Issue 12/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of aging on transformation behavior of reverted austenite and impact toughness in Co-free maraging stainless steel were investigated via thermodynamic calculation, transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). Excluding the film-shaped austenite growing along the phase interface, other shapes of reverted austenite are evolved from the growth and aggregation of acicular austenite in the range of 300-600 °C. Under N-W orientation relationship, {111}γ grows inside the martensite lath along <100>α, and austenite merges in <100>α and <110>α simultaneously. Under K-S orientation relationship, the growth direction of {111}γ is 60° or parallel to <112>α. From 300 to 500 °C, Ni prefers to diffuse into η-Ni3Ti and matrix. The precipitation of Ni3Ti hinders the formation of reverted austenite and significantly deteriorates the toughness. Above 500 °C, due to the coarsening of Ni3Ti and the recovery of matrix, the resistance to the formation of austenite is obviously weakened, and then austenite plays a leading role in the improvement of toughness. When the aging temperature reaches 600 °C, the dissolution of Ni3Ti promotes the formation of austenite and η-Ni3Ti changes to γ'-Ni3Ti. The interaction between Ni3Ti and reverted austenite essentially depends on the diffusion behavior of Ni.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Floreen, The Physical Metallurgy of Maraging Steel, Int. Mater. Rev., 1968, 13, p 115–128. CrossRef S. Floreen, The Physical Metallurgy of Maraging Steel, Int. Mater. Rev., 1968, 13, p 115–128. CrossRef
2.
go back to reference A.R. Oliveira, J.A.A. Diaz, A.D.C. Nizes, A.L. Jardini, and E.G. Del Conte, Investigation of Building Orientation and Aging on Strength-Stiffness Performance of Additively Manufactured Maraging Steel, J. Mater. Eng. Perform., 2021, 30, p 1479–1489. CrossRef A.R. Oliveira, J.A.A. Diaz, A.D.C. Nizes, A.L. Jardini, and E.G. Del Conte, Investigation of Building Orientation and Aging on Strength-Stiffness Performance of Additively Manufactured Maraging Steel, J. Mater. Eng. Perform., 2021, 30, p 1479–1489. CrossRef
3.
go back to reference C.M. Li, L. Huang, M.J. Zhao, X.T. Zhang, J.J. Li, and P.C. Li, Influence of Hot Deformation on Dynamic Recrystallization Behavior of 300M Steel: Rules and Modeling, Mater. Sci. Eng. A., 2020, 797, p 139925. CrossRef C.M. Li, L. Huang, M.J. Zhao, X.T. Zhang, J.J. Li, and P.C. Li, Influence of Hot Deformation on Dynamic Recrystallization Behavior of 300M Steel: Rules and Modeling, Mater. Sci. Eng. A., 2020, 797, p 139925. CrossRef
4.
go back to reference W. Xu, P.E.J. Rivera-Díaz-del-Castillo, and S.V.D. Zwaag, Designing Nanoprecipitation Strengthened UHS Stainless Steels Combing Genetic Algorithms and Thermodynamics, Comput. Mater. Sci., 2008, 44, p 678–689. CrossRef W. Xu, P.E.J. Rivera-Díaz-del-Castillo, and S.V.D. Zwaag, Designing Nanoprecipitation Strengthened UHS Stainless Steels Combing Genetic Algorithms and Thermodynamics, Comput. Mater. Sci., 2008, 44, p 678–689. CrossRef
5.
go back to reference C. Zhang, C. Wang, S.L. Zhang, Y.L. Ding, Q.L. Ge, and J. Su, Effect of Aging Temperature on the Precipitation Behavior and Mechanical Properties of Fe−Cr−Ni Maraging Stainless Steel, Mater. Sci. Eng. A., 2021, 806, p 140763. CrossRef C. Zhang, C. Wang, S.L. Zhang, Y.L. Ding, Q.L. Ge, and J. Su, Effect of Aging Temperature on the Precipitation Behavior and Mechanical Properties of Fe−Cr−Ni Maraging Stainless Steel, Mater. Sci. Eng. A., 2021, 806, p 140763. CrossRef
6.
go back to reference T. Zhou, J. Faleskog, R.P. Babu, J. Odqvist, H. Yu, and P. Hedström, Exploring the Relationship Between the Microstructure and Strength of Fresh and Tempered Martensite in a Maraging Stainless Steel Fe−15Cr−5Ni, Mater. Sci. Eng. A., 2019, 745, p 420–428. CrossRef T. Zhou, J. Faleskog, R.P. Babu, J. Odqvist, H. Yu, and P. Hedström, Exploring the Relationship Between the Microstructure and Strength of Fresh and Tempered Martensite in a Maraging Stainless Steel Fe−15Cr−5Ni, Mater. Sci. Eng. A., 2019, 745, p 420–428. CrossRef
7.
go back to reference Y. Lian, M.Y. Ma, J. Zhang, J.F. Huang, W. Gao, Z.J. Zhang, and C. Zhao, Influence of Austenitizing Temperature on the Microstructure and Mechanical Properties of an Fe−Cr−Ni−Mo−Ti Maraging Stainless Steel, J. Mater. Eng. Perform., 2019, 28(9), p 5466–5475. CrossRef Y. Lian, M.Y. Ma, J. Zhang, J.F. Huang, W. Gao, Z.J. Zhang, and C. Zhao, Influence of Austenitizing Temperature on the Microstructure and Mechanical Properties of an Fe−Cr−Ni−Mo−Ti Maraging Stainless Steel, J. Mater. Eng. Perform., 2019, 28(9), p 5466–5475. CrossRef
8.
go back to reference J.L. Tian, M.B. Shahzad, W. Wang, L.C. Yin, Z.H. Jiang and K. Yang, Role of Co in formation of Ni−Ti Clusters in Maraging Stainless Steel, J. Mater. Sci Tech., 2018, 034, p 1671–1675. CrossRef J.L. Tian, M.B. Shahzad, W. Wang, L.C. Yin, Z.H. Jiang and K. Yang, Role of Co in formation of Ni−Ti Clusters in Maraging Stainless Steel, J. Mater. Sci Tech., 2018, 034, p 1671–1675. CrossRef
9.
go back to reference F.F. Conde, J.D. Escobar, J. Rodriguez, C.R.M. Afonso, M.F. Oliveira, and J.A. Avila, Effect of Combined Tempering and Aging in the Austenite Reversion, Precipitation, and Tensile Properties of an Additively Manufactured Maraging 300 Steel, J. Mater. Eng. Perform., 2021, 11, p 4925–4936. CrossRef F.F. Conde, J.D. Escobar, J. Rodriguez, C.R.M. Afonso, M.F. Oliveira, and J.A. Avila, Effect of Combined Tempering and Aging in the Austenite Reversion, Precipitation, and Tensile Properties of an Additively Manufactured Maraging 300 Steel, J. Mater. Eng. Perform., 2021, 11, p 4925–4936. CrossRef
10.
go back to reference A. Fedoseeva, I. Nikitin, N. Dudova, and R. Kaibyshev, Coarsening of Laves Phase and Creep Behavior of a Re-containing 10%Cr−3%Co−3%W Steel, Mater. Sci. Eng. A., 2021, 812, p 141137. CrossRef A. Fedoseeva, I. Nikitin, N. Dudova, and R. Kaibyshev, Coarsening of Laves Phase and Creep Behavior of a Re-containing 10%Cr−3%Co−3%W Steel, Mater. Sci. Eng. A., 2021, 812, p 141137. CrossRef
11.
go back to reference L. Sun, T.H. Simm, T.L. Martin, S. McAdam, D.R. Galvin, K.M. Perkins, P.A.J. Bagot, M.P. Moody, S.W. Ooi, P. Hill, M.J. Rawson, and H.K.D.H. Bhadeshia, A Novel Ultra-high Strength Maraging Steel with Balanced Ductility and Creep Resistance Achieved by Nanoscale β−NiAl and LAVES Phase Precipitates, Acta Mater., 2018, 149, p 285–301. CrossRef L. Sun, T.H. Simm, T.L. Martin, S. McAdam, D.R. Galvin, K.M. Perkins, P.A.J. Bagot, M.P. Moody, S.W. Ooi, P. Hill, M.J. Rawson, and H.K.D.H. Bhadeshia, A Novel Ultra-high Strength Maraging Steel with Balanced Ductility and Creep Resistance Achieved by Nanoscale β−NiAl and LAVES Phase Precipitates, Acta Mater., 2018, 149, p 285–301. CrossRef
12.
go back to reference S.W. Ooi, P. Hill, M. Rawson, and H.K.D.H. Bhadeshia, Effect of Retained Austenite and High Temperature Laves Phase on the Work Hardening of an Experimental Maraging Steel, Mater. Sci. Eng. A., 2013, 564, p 485–492. CrossRef S.W. Ooi, P. Hill, M. Rawson, and H.K.D.H. Bhadeshia, Effect of Retained Austenite and High Temperature Laves Phase on the Work Hardening of an Experimental Maraging Steel, Mater. Sci. Eng. A., 2013, 564, p 485–492. CrossRef
13.
go back to reference S. Zeisl, A. Lassnig, A. Hohenwarter, and F. Mendez-Martin, Precipitation Behavior of a Co-free Fe−Ni−Cr−Mo−Ti−Al Maraging Steel After Severe Plastic Deformation, Mater. Sci. Eng. A., 2022, 833, p 142416. CrossRef S. Zeisl, A. Lassnig, A. Hohenwarter, and F. Mendez-Martin, Precipitation Behavior of a Co-free Fe−Ni−Cr−Mo−Ti−Al Maraging Steel After Severe Plastic Deformation, Mater. Sci. Eng. A., 2022, 833, p 142416. CrossRef
14.
go back to reference K. Li, L. Wei, B. An, B. Yu, and R.D.K. Misra, Aging Phenomenon in low Lattice-misfit Cobalt-free Maraging Steel: Microstructural Evolution and Strengthening Behavior, Mater. Sci. Eng. A., 2019, 739, p 445–454. CrossRef K. Li, L. Wei, B. An, B. Yu, and R.D.K. Misra, Aging Phenomenon in low Lattice-misfit Cobalt-free Maraging Steel: Microstructural Evolution and Strengthening Behavior, Mater. Sci. Eng. A., 2019, 739, p 445–454. CrossRef
15.
go back to reference S.H. Jiang, X.Q. Xu, W. Li, B. Peng, Y. Wu, X.J. Liu, H. Wang, X.Z. Wang, and Z.P. Lu, Strain Hardening Mediated by Coherent Nanoprecipitates in Ultrahigh-Strength Steels, Acta Mater., 2021, 213, p 116984. CrossRef S.H. Jiang, X.Q. Xu, W. Li, B. Peng, Y. Wu, X.J. Liu, H. Wang, X.Z. Wang, and Z.P. Lu, Strain Hardening Mediated by Coherent Nanoprecipitates in Ultrahigh-Strength Steels, Acta Mater., 2021, 213, p 116984. CrossRef
16.
go back to reference C.Y. Huang and H.W. Yen, HRTEM Investigations on Nano Precipitates in Custom 475 Maraging Stainless Steel, Mater. Charact., 2021, 178, p 111216. CrossRef C.Y. Huang and H.W. Yen, HRTEM Investigations on Nano Precipitates in Custom 475 Maraging Stainless Steel, Mater. Charact., 2021, 178, p 111216. CrossRef
17.
go back to reference A. Hadadzadeh, A. Shahriari, B.S. Amirkhiz, J. Li, and M. Mohammadi, Additive Manufacturing of an Fe–Cr–Ni–Al Maraging Stainless Steel: Microstructure Evolution, Heat Treatment, and Strengthening Mechanisms, Mater. Sci. Eng. A., 2020, 787, p 139470. CrossRef A. Hadadzadeh, A. Shahriari, B.S. Amirkhiz, J. Li, and M. Mohammadi, Additive Manufacturing of an Fe–Cr–Ni–Al Maraging Stainless Steel: Microstructure Evolution, Heat Treatment, and Strengthening Mechanisms, Mater. Sci. Eng. A., 2020, 787, p 139470. CrossRef
18.
go back to reference H.L. Zhang, M.Y. Sun, Y.X. Liu, D.P. Ma, B. Xu, M.X. Huang, D.Z. Li, and Y.Y. Li, Ultrafine-Grained Dual-Phase Maraging Steel With High Strength and Excellent Cryogenic Toughness, Acta Mater., 2021, 211, p 116878. CrossRef H.L. Zhang, M.Y. Sun, Y.X. Liu, D.P. Ma, B. Xu, M.X. Huang, D.Z. Li, and Y.Y. Li, Ultrafine-Grained Dual-Phase Maraging Steel With High Strength and Excellent Cryogenic Toughness, Acta Mater., 2021, 211, p 116878. CrossRef
19.
go back to reference M.C. Niu, K. Yang, J.H. Luan, W. Wang, and Z.B. Jiao, Cu-Assisted Austenite Reversion and Enhanced TRIP Effect in Maraging Stainless Steels, J Mater Sci Technol., 2022, 104, p 52–58. CrossRef M.C. Niu, K. Yang, J.H. Luan, W. Wang, and Z.B. Jiao, Cu-Assisted Austenite Reversion and Enhanced TRIP Effect in Maraging Stainless Steels, J Mater Sci Technol., 2022, 104, p 52–58. CrossRef
20.
go back to reference S. Gupta, A. Ma, and A. Hartmaier, Mechanical Twinning Induced Alteration in the Kinetics of Martensitic Phase Transformation in TRIP-Maraging Steels, Int. J. Sol. Struct., 2018, 155, p 213–224. CrossRef S. Gupta, A. Ma, and A. Hartmaier, Mechanical Twinning Induced Alteration in the Kinetics of Martensitic Phase Transformation in TRIP-Maraging Steels, Int. J. Sol. Struct., 2018, 155, p 213–224. CrossRef
21.
go back to reference J.T. Benzing, A. Kwiatkowski da Silva, L. Morsdorf, J. Bentley, D. Ponge, A. Dutta, J. Han, J.R. McBride, B. Van Leer, B. Gault, D. Raabe, and J.E. Wittig, Multi-scale Characterization of Austenite Reversion and Martensite Recovery in a Cold-Rolled Medium-Mn Steel, Acta Mater., 2019, 166, p 512–530. CrossRef J.T. Benzing, A. Kwiatkowski da Silva, L. Morsdorf, J. Bentley, D. Ponge, A. Dutta, J. Han, J.R. McBride, B. Van Leer, B. Gault, D. Raabe, and J.E. Wittig, Multi-scale Characterization of Austenite Reversion and Martensite Recovery in a Cold-Rolled Medium-Mn Steel, Acta Mater., 2019, 166, p 512–530. CrossRef
22.
go back to reference H. Shirazi, G. Miyamoto, S.H. Nedjad, T. Chiba, M.N. Ahmadabadi, and T. Furuhara, Microstructure Evolution During Austenite Reversion in Fe–Ni Martensitic Alloys, Acta Mater., 2017, 144, p 269–280. CrossRef H. Shirazi, G. Miyamoto, S.H. Nedjad, T. Chiba, M.N. Ahmadabadi, and T. Furuhara, Microstructure Evolution During Austenite Reversion in Fe–Ni Martensitic Alloys, Acta Mater., 2017, 144, p 269–280. CrossRef
23.
go back to reference Y.W. Zhang, Y.D. Yin, D.K. Li, P. Ma, Q.Y. Liu, X.M. Yuan, and S.Z. Li, Temperature Dependent Phase Transformation Kinetics of Reverted Austenite During Tempering in 13Cr Supermartensitic Stainless Steel, Metals., 2019, 9, p 1203. CrossRef Y.W. Zhang, Y.D. Yin, D.K. Li, P. Ma, Q.Y. Liu, X.M. Yuan, and S.Z. Li, Temperature Dependent Phase Transformation Kinetics of Reverted Austenite During Tempering in 13Cr Supermartensitic Stainless Steel, Metals., 2019, 9, p 1203. CrossRef
24.
go back to reference L.P.M.D. Santos, M. Béreš, M.O.D. Castro, O.W.C. Sarvezuk, L. Wu, L.F.G. Herculano, C.C. Silva, M. Masoumi, and H.F.G.D. Abreu, Kinetics of Reverted Austenite in 18 wt.% Ni Grade 300 Maraging Steel: An in-situ Synchrotron X-ray Diffraction and Texture Study, JOM, 2020, 72, p 3502–3512. CrossRef L.P.M.D. Santos, M. Béreš, M.O.D. Castro, O.W.C. Sarvezuk, L. Wu, L.F.G. Herculano, C.C. Silva, M. Masoumi, and H.F.G.D. Abreu, Kinetics of Reverted Austenite in 18 wt.% Ni Grade 300 Maraging Steel: An in-situ Synchrotron X-ray Diffraction and Texture Study, JOM, 2020, 72, p 3502–3512. CrossRef
25.
go back to reference R. Schnitzer, G.A. Zickler, E. Lach, H. Clemens, S. Zinner, T. Lippmann, and H. Leitner, Influence of Reverted Austenite on Static and Dynamic Mechanical Properties of a PH 13–8 Mo Maraging Steel, Mater. Sci. Eng. A., 2010, 527, p 2065–2070. CrossRef R. Schnitzer, G.A. Zickler, E. Lach, H. Clemens, S. Zinner, T. Lippmann, and H. Leitner, Influence of Reverted Austenite on Static and Dynamic Mechanical Properties of a PH 13–8 Mo Maraging Steel, Mater. Sci. Eng. A., 2010, 527, p 2065–2070. CrossRef
26.
go back to reference R.D.K. Misra, V.S.A. Challa, P.K.C. Venkatsurya, Y.F. Shen, M.C. Somani, and L.P. Karjalainen, Interplay Between Grain Structure, Deformation Mechanisms and Austenite Stability in Phase-Reversion-Induced Nanograined/Ultrafine-Grained Austenitic Ferrous Alloy, Acta Mater., 2014, 84, p 339–348. CrossRef R.D.K. Misra, V.S.A. Challa, P.K.C. Venkatsurya, Y.F. Shen, M.C. Somani, and L.P. Karjalainen, Interplay Between Grain Structure, Deformation Mechanisms and Austenite Stability in Phase-Reversion-Induced Nanograined/Ultrafine-Grained Austenitic Ferrous Alloy, Acta Mater., 2014, 84, p 339–348. CrossRef
27.
go back to reference S. Lfergane, M. Pinkas, Z. Barkay, E. Brosh, V. Ezersky, O. Beeri, and N. Eliaz, The Relation Between Aging Temperature, Microstructure Evolution and Hardening of Custom 465 Stainless Steel, Mater. Charact., 2017, 127, p 129–136. CrossRef S. Lfergane, M. Pinkas, Z. Barkay, E. Brosh, V. Ezersky, O. Beeri, and N. Eliaz, The Relation Between Aging Temperature, Microstructure Evolution and Hardening of Custom 465 Stainless Steel, Mater. Charact., 2017, 127, p 129–136. CrossRef
28.
go back to reference O. Moshka, M. Pinkas, E. Brosh, V. Ezersky, and L. Meshi, Addressing the Issue of Precipitates in Maraging Steels – Unambiguous Answer, Mater. Sci. Eng. A., 2015, 638, p 232–239. CrossRef O. Moshka, M. Pinkas, E. Brosh, V. Ezersky, and L. Meshi, Addressing the Issue of Precipitates in Maraging Steels – Unambiguous Answer, Mater. Sci. Eng. A., 2015, 638, p 232–239. CrossRef
29.
go back to reference P.P. Sinha, D. Sivakumar, N.S. Babu, K.T. Tharian, and A. Natarajan, Austenite Reversion in 18 Ni Co-free Maraging Steel, Steel Res., 1995, 66, p 490–494. CrossRef P.P. Sinha, D. Sivakumar, N.S. Babu, K.T. Tharian, and A. Natarajan, Austenite Reversion in 18 Ni Co-free Maraging Steel, Steel Res., 1995, 66, p 490–494. CrossRef
30.
go back to reference M. Shmulevitsh, S. Ifergane, N. Elica, and R.Z. Shneck, Diffusion and Trapping of Hydrogen due to Elastic Interaction With η-Ni3Ti Precipitates in Custom 465® Stainless Steel, Int. J. Hydrog. En., 2019, 44, p 31610–31620. CrossRef M. Shmulevitsh, S. Ifergane, N. Elica, and R.Z. Shneck, Diffusion and Trapping of Hydrogen due to Elastic Interaction With η-Ni3Ti Precipitates in Custom 465® Stainless Steel, Int. J. Hydrog. En., 2019, 44, p 31610–31620. CrossRef
31.
go back to reference A. Ahadi, E. Rezaei, and A.K. Taheri, Effect of Hot Rolling on Microstructure and Transformation Cycling Behaviour of Equiatomic NiTi Shape Memory Alloy, Mater. Sci. Tech., 2000, 28, p 727–732. CrossRef A. Ahadi, E. Rezaei, and A.K. Taheri, Effect of Hot Rolling on Microstructure and Transformation Cycling Behaviour of Equiatomic NiTi Shape Memory Alloy, Mater. Sci. Tech., 2000, 28, p 727–732. CrossRef
32.
go back to reference E.I. Galindo-Nava, W.M. Rainforth, and P.E.J. Rivera-Díaz-del-Castillo, Predicting Microstructure and Strength of Maraging Steels: Elemental Optimization, Acta Mater., 2016, 117, p 270–285. CrossRef E.I. Galindo-Nava, W.M. Rainforth, and P.E.J. Rivera-Díaz-del-Castillo, Predicting Microstructure and Strength of Maraging Steels: Elemental Optimization, Acta Mater., 2016, 117, p 270–285. CrossRef
33.
go back to reference M. Masoumi, I.F.D. Barros, L.F.G. Herculano, H.L.F. Coelho, and H.F.G.D. Abreu, Effect of Microstructure and Crystallographic Texture on the CHARPY Impact Test for Maraging 300 Steel, Mater. Charact., 2016, 120, p 203–209. CrossRef M. Masoumi, I.F.D. Barros, L.F.G. Herculano, H.L.F. Coelho, and H.F.G.D. Abreu, Effect of Microstructure and Crystallographic Texture on the CHARPY Impact Test for Maraging 300 Steel, Mater. Charact., 2016, 120, p 203–209. CrossRef
34.
go back to reference D. Raabe, S. Sandlobes, J. Millan, D. Ponge, H. Assadi, M. Herbig, and P.P. Choi, Segregation Engineering Enables Nanoscale Martensite to Austenite Phase Transformation at Grain Boundaries: A Pathway to Ductile Martensite, Acta. Mater., 2013, 61, p 6132–6152. CrossRef D. Raabe, S. Sandlobes, J. Millan, D. Ponge, H. Assadi, M. Herbig, and P.P. Choi, Segregation Engineering Enables Nanoscale Martensite to Austenite Phase Transformation at Grain Boundaries: A Pathway to Ductile Martensite, Acta. Mater., 2013, 61, p 6132–6152. CrossRef
35.
go back to reference P.C. Song, W.B. Liu, C. Zhang, L. Liu, and Z.G. Yang, Reversed Austenite Growth Behavior of a 13-5%Ni Stainless Steel During Intercritical Annealing, ISIJ Int., 2016, 56, p 148–153. CrossRef P.C. Song, W.B. Liu, C. Zhang, L. Liu, and Z.G. Yang, Reversed Austenite Growth Behavior of a 13-5%Ni Stainless Steel During Intercritical Annealing, ISIJ Int., 2016, 56, p 148–153. CrossRef
36.
go back to reference F.L. Sicupira, M.J.R. Sandim, H.R.Z. Sandim, D.B. Santos, and R.A. Renzetti, Quantification of Retained Austenite by X-ray Diffraction and Saturation Magnetization in a Supermartensitic Stainless Steel, Mater. Charact., 2016, 115, p 90–96. CrossRef F.L. Sicupira, M.J.R. Sandim, H.R.Z. Sandim, D.B. Santos, and R.A. Renzetti, Quantification of Retained Austenite by X-ray Diffraction and Saturation Magnetization in a Supermartensitic Stainless Steel, Mater. Charact., 2016, 115, p 90–96. CrossRef
37.
go back to reference Y. Dong, S.H. Li, J. Li, W. Jiang, J. Su, and K.Y. Zhao, Study on the Crystallographic Orientation Relationship and Formation Mechanism of Reversed Austenite in Economical Cr12 Super Martensitic Stainless Steel, Mater. Charact., 2015, 109, p 100–106. CrossRef Y. Dong, S.H. Li, J. Li, W. Jiang, J. Su, and K.Y. Zhao, Study on the Crystallographic Orientation Relationship and Formation Mechanism of Reversed Austenite in Economical Cr12 Super Martensitic Stainless Steel, Mater. Charact., 2015, 109, p 100–106. CrossRef
38.
go back to reference P. Hedström, H.Y. Fei, J. Zhou, S. Wessman, M. Thuvander, and J. Odqvist, The 475 °C Embrittlement in Fe–20Cr and Fe–20Cr–X (X=Ni, Cu, Mn) Alloys Studied by Mechanical Testing and Atom Probe Tomography, Mater. Sci. Eng. A., 2013, 574, p 123–129. CrossRef P. Hedström, H.Y. Fei, J. Zhou, S. Wessman, M. Thuvander, and J. Odqvist, The 475 °C Embrittlement in Fe–20Cr and Fe–20Cr–X (X=Ni, Cu, Mn) Alloys Studied by Mechanical Testing and Atom Probe Tomography, Mater. Sci. Eng. A., 2013, 574, p 123–129. CrossRef
39.
go back to reference J.L. Tian, W. Wang, L.C. Yin, W. Yan, Y.Y. Shan, and K. Yang, Three Dimensional Atom Probe and First-Principles Studies on Spinodal Decomposition of Cr in a Co-Alloyed Maraging Stainless Steel, Scr. Mater., 2016, 121, p 37–41. CrossRef J.L. Tian, W. Wang, L.C. Yin, W. Yan, Y.Y. Shan, and K. Yang, Three Dimensional Atom Probe and First-Principles Studies on Spinodal Decomposition of Cr in a Co-Alloyed Maraging Stainless Steel, Scr. Mater., 2016, 121, p 37–41. CrossRef
40.
go back to reference L.S. Lei, W.Y. Li, and W.X. Tao, Effects of Ni Content on the Microstructures, Mechanical Properties and Thermal Aging Embrittlement Behavior of Fe–20Cr–xNi Alloys, Mater. Sci. Eng. A., 2015, 639, p 640–646. CrossRef L.S. Lei, W.Y. Li, and W.X. Tao, Effects of Ni Content on the Microstructures, Mechanical Properties and Thermal Aging Embrittlement Behavior of Fe–20Cr–xNi Alloys, Mater. Sci. Eng. A., 2015, 639, p 640–646. CrossRef
41.
go back to reference W. Li, S. Lu, Q.M. Hu, H.H. Mao, B. Johansson, and L. Vitos, The Effect of Al on the 475 °C Embrittlement of Fe−Cr Alloys, Comput. Mater. Sci., 2013, 74, p 101–106. CrossRef W. Li, S. Lu, Q.M. Hu, H.H. Mao, B. Johansson, and L. Vitos, The Effect of Al on the 475 °C Embrittlement of Fe−Cr Alloys, Comput. Mater. Sci., 2013, 74, p 101–106. CrossRef
42.
go back to reference J. Wang, H. Zou, C. Li, S.Y. Qiu, and B.L. Shen, The Effect of Microstructural Evolution on Hardening Behavior of Type 17–4PH Stainless Steel in Long-Term Aging at 350 °C, Mater. Charact., 2006, 57, p 274–280. CrossRef J. Wang, H. Zou, C. Li, S.Y. Qiu, and B.L. Shen, The Effect of Microstructural Evolution on Hardening Behavior of Type 17–4PH Stainless Steel in Long-Term Aging at 350 °C, Mater. Charact., 2006, 57, p 274–280. CrossRef
43.
go back to reference Y.C. Li, W. Yan, J.D. Cotton, G.J. Ryan, Y.F. Shen, W. Wang, Y.Y. Shan, and K. Yang, A New 1.9 GPa Maraging Stainless Steel Strengthened by Multiple Precipitating Species, Mater. Des., 2015, 82, p 56–63. CrossRef Y.C. Li, W. Yan, J.D. Cotton, G.J. Ryan, Y.F. Shen, W. Wang, Y.Y. Shan, and K. Yang, A New 1.9 GPa Maraging Stainless Steel Strengthened by Multiple Precipitating Species, Mater. Des., 2015, 82, p 56–63. CrossRef
44.
go back to reference J.D. Keyzer, G. Cacciamani, N. Dupin, and P. Wollants, Thermodynamic Modelling and Optimization of the Fe–Ni–Ti System, Calphad, 2009, 33, p 109–123. CrossRef J.D. Keyzer, G. Cacciamani, N. Dupin, and P. Wollants, Thermodynamic Modelling and Optimization of the Fe–Ni–Ti System, Calphad, 2009, 33, p 109–123. CrossRef
45.
go back to reference P. Gong, B.P. Wynne, A.J. Knowles, A. Turk, L. Ma, E.I. Galindo-Nava, and W.M. Rainforth, Effect of Aging on the Microstructural Evolution in a New Design of Maraging Steels with Carbon, Acta. Mater., 2020, 196, p 101–121. CrossRef P. Gong, B.P. Wynne, A.J. Knowles, A. Turk, L. Ma, E.I. Galindo-Nava, and W.M. Rainforth, Effect of Aging on the Microstructural Evolution in a New Design of Maraging Steels with Carbon, Acta. Mater., 2020, 196, p 101–121. CrossRef
46.
go back to reference Y.P. Zhang, D.P. Zhan, X.W. Qi, and Z.H. Jiang, Austenite and Precipitation in Secondary-Hardening Ultra-High-Strength Stainless Steel, Mater. Charact., 2018, 144, p 393–399. CrossRef Y.P. Zhang, D.P. Zhan, X.W. Qi, and Z.H. Jiang, Austenite and Precipitation in Secondary-Hardening Ultra-High-Strength Stainless Steel, Mater. Charact., 2018, 144, p 393–399. CrossRef
47.
go back to reference M. Wiessner, E. Gamsjäger, S.V.D. Zwaag, and P. Angerer, Effect of Reverted Austenite on Tensile and Impact Strength in a Martensitic Stainless Steel–An in-situ X-ray Diffraction Study, Mater. Sci. Eng. A., 2017, 682, p 117–125. CrossRef M. Wiessner, E. Gamsjäger, S.V.D. Zwaag, and P. Angerer, Effect of Reverted Austenite on Tensile and Impact Strength in a Martensitic Stainless Steel–An in-situ X-ray Diffraction Study, Mater. Sci. Eng. A., 2017, 682, p 117–125. CrossRef
48.
go back to reference Y.U. Heo, M. Takeguchi, K. Furuya, and H.C. Lee, Transformation of DO24 η–Ni3Ti Phase to Face-Centered Cubic Austenite During Isothermal Aging of an Fe–Ni–Ti Alloy, Acta. Mater., 2009, 57, p 1176–1187. CrossRef Y.U. Heo, M. Takeguchi, K. Furuya, and H.C. Lee, Transformation of DO24 η–Ni3Ti Phase to Face-Centered Cubic Austenite During Isothermal Aging of an Fe–Ni–Ti Alloy, Acta. Mater., 2009, 57, p 1176–1187. CrossRef
49.
go back to reference S.H. Jiang, H. Wang, Y. Wu, X.J. Liu, H.H. Chen, M.J. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M.W. Chen, Y.D. Wang, and Z.P. Lu, Ultrastrong Steel via Minimal Lattice Misfit and High-Density Nanoprecipitation, Nature, 2017, 544, p 460–464. CrossRef S.H. Jiang, H. Wang, Y. Wu, X.J. Liu, H.H. Chen, M.J. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M.W. Chen, Y.D. Wang, and Z.P. Lu, Ultrastrong Steel via Minimal Lattice Misfit and High-Density Nanoprecipitation, Nature, 2017, 544, p 460–464. CrossRef
51.
go back to reference L. Wang, C.F. Dong, J.Z. Yao, Z.B. Dai, C. Man, Y.P. Yin, K. Xiao, and X.G. Li, The Effect of η–Ni3Ti Precipitates and Reversed Austenite on the Passive Film Stability of Nickel-Rich Custom 465 Steel, Corros. Sci., 2019, 154, p 178–190. CrossRef L. Wang, C.F. Dong, J.Z. Yao, Z.B. Dai, C. Man, Y.P. Yin, K. Xiao, and X.G. Li, The Effect of η–Ni3Ti Precipitates and Reversed Austenite on the Passive Film Stability of Nickel-Rich Custom 465 Steel, Corros. Sci., 2019, 154, p 178–190. CrossRef
52.
go back to reference B.C.D. Cooman, Structure-Properties Relationship in TRIP Steels Containing Carbide-Free Bainite, Curr. Opin. Sol. State Mater. Sci., 2004, 8, p 258–303. CrossRef B.C.D. Cooman, Structure-Properties Relationship in TRIP Steels Containing Carbide-Free Bainite, Curr. Opin. Sol. State Mater. Sci., 2004, 8, p 258–303. CrossRef
53.
go back to reference L. Liu, Q. Yu, Z. Wang, J. Ell, M.X. Huang, and R.O. Ritchie, Making Ultrastrong Steel Tough by Grain-Boundary Delamination, Science, 2020, 368, p 1347–1352. CrossRef L. Liu, Q. Yu, Z. Wang, J. Ell, M.X. Huang, and R.O. Ritchie, Making Ultrastrong Steel Tough by Grain-Boundary Delamination, Science, 2020, 368, p 1347–1352. CrossRef
Metadata
Title
Effect of Aging on Transformation Behavior of Reverted Austenite and Toughness in Co-Free Maraging Stainless Steel
Authors
Chao Zhang
Chang Wang
Ao Wang
Chuanbo Zheng
Zhenbao Liu
Jianxiong Liang
Jie Su
Qilu Ge
Publication date
20-05-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 12/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07018-6

Other articles of this Issue 12/2022

Journal of Materials Engineering and Performance 12/2022 Go to the issue

Premium Partners