Skip to main content
Top
Published in:

27-12-2022 | Technical Article

Effect of Al2O3 Nanoparticle Addition on the Microstructure, Mechanical, Thermal, and Electrical Properties of Melt-Spun SAC355 Lead-Free Solder for Electronic Packaging

Authors: Hamed Al-sorory, Mohammed S. Gumaan, Rizk Mostafa Shalaby

Published in: Journal of Materials Engineering and Performance | Issue 19/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study aims to investigate the impact of low-cost, highly hardened, and thermally stable Al2O3 nanoparticles (NPs) on the physical properties of the eutectic SAC355 solder alloy. Various concentrations ratios of (SAC355)100−x(Al2O3)x NPs where (x = 0.1, 0.3, 0.5, 0.7, and 1 wt.%) were synthesized using the melt-spinning process. Phase identification and morphology features of the solder were systematically studied and investigated. Microstructure studies revealed that adding a trace amount of Al2O3 NPs to the eutectic (SAC355) system refine the crystallite size of both rhombohedral β-Sn, orthorhombic Cu6Sn5 and Ag3Sn IMCs. The elastic modulus (E) and Vickers microhardness (Hv) were improved. This can be attributed to the interstitial dispersion of Al2O3 NPs at grain boundaries, which make snail-like Ag3Sn particles more uniformly distributed within β-Sn matrix that could obstruct the dislocation slipping. The results showed that creep resistance (n) decreases from dislocation climb value at 0.1 wt.% to grain boundary sliding value at 1 wt.% Al2O3 NPs content. Electrical resistance (ρ), Fermi energy (Ef), and Fermi velocity (Vf) increased with Al2O3 NPs content, while electron concentration (N) decreased due to increased charge carrier scattering centers. However, increasing the doping content of Al2O3 NPs led to an increase in the melting temperature (Tm), compared with plain solder. All results showed that Al2O3 NPs addition has an effective method to enhance new lead-free solder joints.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H.A. Alsorory, M.S.S. Gumaan, and R. Shalaby, Effect of TiO 2 Nanoparticles on the Microstructure, Mechanical and Thermal Properties of Rapid Quenching SAC355 Lead-Free Solder Alloy, Solder. Surf. Mt, Technol, 2022. H.A. Alsorory, M.S.S. Gumaan, and R. Shalaby, Effect of TiO 2 Nanoparticles on the Microstructure, Mechanical and Thermal Properties of Rapid Quenching SAC355 Lead-Free Solder Alloy, Solder. Surf. Mt, Technol, 2022.
2.
go back to reference S. Tikale and K.N. Prabhu, Development of Low-Silver Content SAC0307 Solder Alloy with Al2O3 Nanoparticles, Mater. Sci. Eng. A Elsevier B V, 2020, 787, p 139439. CrossRef S. Tikale and K.N. Prabhu, Development of Low-Silver Content SAC0307 Solder Alloy with Al2O3 Nanoparticles, Mater. Sci. Eng. A Elsevier B V, 2020, 787, p 139439. CrossRef
3.
go back to reference M.Z. Yahaya, N.A. Salleh, S. Kheawhom, B. Illes, M.F. Mohd Nazeri, and A.A. Mohamad, Selective Etching and Hardness Properties of Quenched SAC305 Solder Joints, Solder. Surf. Mt. Technol., 2020, 32(4), p 225–233. CrossRef M.Z. Yahaya, N.A. Salleh, S. Kheawhom, B. Illes, M.F. Mohd Nazeri, and A.A. Mohamad, Selective Etching and Hardness Properties of Quenched SAC305 Solder Joints, Solder. Surf. Mt. Technol., 2020, 32(4), p 225–233. CrossRef
4.
go back to reference K. Kanlayasiri and N. Meesathien, Effects of Zinc Oxide Nanoparticles on Properties of SAC0307 Lead-Free Solder Paste, Adv. Mater. Sci. Eng, Hindawi, 2018.CrossRef K. Kanlayasiri and N. Meesathien, Effects of Zinc Oxide Nanoparticles on Properties of SAC0307 Lead-Free Solder Paste, Adv. Mater. Sci. Eng, Hindawi, 2018.CrossRef
6.
go back to reference A. Roshanghias, A.H. Kokabi, Y. Miyashita, Y. Mutoh, I. Ihara, R.G. Guan Fatt, and H.R. Madaah-Hosseini, Nanoindentation Creep Behavior of Nanocomposite Sn-Ag-Cu Solders, J. Electron. Mater., 2012, 41(8), p 2057–2064. CrossRef A. Roshanghias, A.H. Kokabi, Y. Miyashita, Y. Mutoh, I. Ihara, R.G. Guan Fatt, and H.R. Madaah-Hosseini, Nanoindentation Creep Behavior of Nanocomposite Sn-Ag-Cu Solders, J. Electron. Mater., 2012, 41(8), p 2057–2064. CrossRef
7.
go back to reference M.M. Jubair, M.S. Gumaan, and R.M. Shalaby, Reliable Sn-Ag-Cu Lead-Free Melt-Spun Material Required for High-Performance Applications, Zeitschrift für Kristallographie Cryst Mater., 2019, 234, p 757–767. CrossRef M.M. Jubair, M.S. Gumaan, and R.M. Shalaby, Reliable Sn-Ag-Cu Lead-Free Melt-Spun Material Required for High-Performance Applications, Zeitschrift für Kristallographie Cryst Mater., 2019, 234, p 757–767. CrossRef
8.
go back to reference A. Olofinjana, R. Haque, M. Mathir, and N.Y. Voo, Studies of the Solidification Characteristics in Sn-Ag-Cu-Bi Solder Alloys, Procedia Manuf Elsevier B. V, 2019, 30, p 596–603. CrossRef A. Olofinjana, R. Haque, M. Mathir, and N.Y. Voo, Studies of the Solidification Characteristics in Sn-Ag-Cu-Bi Solder Alloys, Procedia Manuf Elsevier B. V, 2019, 30, p 596–603. CrossRef
9.
go back to reference J. Wu, S. Xue, J. Wang, and M. Wu, Coupling Effects of Rare-Earth Pr and Al2O3 Nanoparticles on the Microstructure and Properties of Sn-0.3Ag-0.7Cu Low-Ag Solder, J. Alloys Compd., 2019, 784, p 471–487. CrossRef J. Wu, S. Xue, J. Wang, and M. Wu, Coupling Effects of Rare-Earth Pr and Al2O3 Nanoparticles on the Microstructure and Properties of Sn-0.3Ag-0.7Cu Low-Ag Solder, J. Alloys Compd., 2019, 784, p 471–487. CrossRef
11.
go back to reference Z.X. Li and M. Gupta, High Strength Lead-Free Composite Solder Materials Using Nano-Al 2O3 as Reinforcement, Adv. Eng. Mater., 2005, 7(11), p 1049–1054. CrossRef Z.X. Li and M. Gupta, High Strength Lead-Free Composite Solder Materials Using Nano-Al 2O3 as Reinforcement, Adv. Eng. Mater., 2005, 7(11), p 1049–1054. CrossRef
12.
go back to reference L.C. Tsao, R.W. Wu, T.H. Cheng, K.H. Fan, and R.S. Chen, Effects of Nano-Al2O3 Particles on Microstructure and Mechanical Properties of Sn3.5Ag0.5Cu Composite Solder Ball Grid Array Joints on Sn/Cu Pads, Mater. Des., 2013, 50, p 774–781. CrossRef L.C. Tsao, R.W. Wu, T.H. Cheng, K.H. Fan, and R.S. Chen, Effects of Nano-Al2O3 Particles on Microstructure and Mechanical Properties of Sn3.5Ag0.5Cu Composite Solder Ball Grid Array Joints on Sn/Cu Pads, Mater. Des., 2013, 50, p 774–781. CrossRef
13.
go back to reference L.C. Tsao, S.Y. Chang, C.I. Lee, W.H. Sun, and C.H. Huang, Effects of Nano-Al2O3 Additions on Microstructure Development and Hardness of Sn3.5Ag0.5Cu Solder, Mater. Des. Elsevier Ltd, 2010, 31(10), p 4831–4835. L.C. Tsao, S.Y. Chang, C.I. Lee, W.H. Sun, and C.H. Huang, Effects of Nano-Al2O3 Additions on Microstructure Development and Hardness of Sn3.5Ag0.5Cu Solder, Mater. Des. Elsevier Ltd, 2010, 31(10), p 4831–4835.
14.
go back to reference X. Bi, X. Hu and Q. Li, Effect of Co Addition into Ni Film on Shear Strength of Solder/Ni/Cu System: Experimental and Theoretical Investigations, Mater. Sci. Eng. A Elsevier, 2020, 788, p 139589. CrossRef X. Bi, X. Hu and Q. Li, Effect of Co Addition into Ni Film on Shear Strength of Solder/Ni/Cu System: Experimental and Theoretical Investigations, Mater. Sci. Eng. A Elsevier, 2020, 788, p 139589. CrossRef
15.
go back to reference R. Mostafa Shalaby, M. Kamal, E.A.M. Ali, and M.S. Gumaan, Microstructural and Mechanical Characterization of Melt Spun Process Sn-3.5Ag and Sn-3.5Ag-XCu Lead-Free Solders for Low Cost Electronic Assembly, Mater. Sci. Eng. A Elsevier, 2017, 690, p 446–452. CrossRef R. Mostafa Shalaby, M. Kamal, E.A.M. Ali, and M.S. Gumaan, Microstructural and Mechanical Characterization of Melt Spun Process Sn-3.5Ag and Sn-3.5Ag-XCu Lead-Free Solders for Low Cost Electronic Assembly, Mater. Sci. Eng. A Elsevier, 2017, 690, p 446–452. CrossRef
16.
go back to reference K.H. Lee and S.W. Kim, Design and Preparation of High-Performance Bulk Thermoelectric Materials with Defect Structures, J. Korean Ceram. Soc., 2017, 54(2), p 75–85. CrossRef K.H. Lee and S.W. Kim, Design and Preparation of High-Performance Bulk Thermoelectric Materials with Defect Structures, J. Korean Ceram. Soc., 2017, 54(2), p 75–85. CrossRef
17.
go back to reference E. Schreiber, O.L. Anderson, and N. Soga, “Elastic Constants and Their Measurement,” (New York), 1974 E. Schreiber, O.L. Anderson, and N. Soga, “Elastic Constants and Their Measurement,” (New York), 1974
18.
go back to reference D. Grabco and D. Leu, Deformation Mechanism as a Function of Applied Load under Metal Microindentation, Mater. Sci. Eng. A Elsevier, 2010, 527(26), p 6987–6996. CrossRef D. Grabco and D. Leu, Deformation Mechanism as a Function of Applied Load under Metal Microindentation, Mater. Sci. Eng. A Elsevier, 2010, 527(26), p 6987–6996. CrossRef
19.
go back to reference R. Mostafa Shalaby, M. Kamal, E.A.M. Ali, and M.S. Gumaan, Microstructural and Mechanical Characterization of Melt Spun Process Sn-3.5Ag and Sn-3.5Ag-XCu Lead-Free Solders for Low Cost Electronic Assembly, Mater. Sci. Eng. A Elsevier, 2017, 690(2016), p 446–452. CrossRef R. Mostafa Shalaby, M. Kamal, E.A.M. Ali, and M.S. Gumaan, Microstructural and Mechanical Characterization of Melt Spun Process Sn-3.5Ag and Sn-3.5Ag-XCu Lead-Free Solders for Low Cost Electronic Assembly, Mater. Sci. Eng. A Elsevier, 2017, 690(2016), p 446–452. CrossRef
21.
go back to reference V. Mote, Y. Purushotham, and B. Dole, Williamson-Hall Analysis in Estimation of Lattice Strain in Nanometer-Sized ZnO Particles, J. Theor. Appl. Phys., 2012, 6(1), p 2–9. CrossRef V. Mote, Y. Purushotham, and B. Dole, Williamson-Hall Analysis in Estimation of Lattice Strain in Nanometer-Sized ZnO Particles, J. Theor. Appl. Phys., 2012, 6(1), p 2–9. CrossRef
22.
go back to reference G.K. Williamson and W.H. Hall, x-ray Line Broadening from Filed Aluminium and Wolfram, Acta Metall. Pergamon, 1953, 1(1), p 22–31. CrossRef G.K. Williamson and W.H. Hall, x-ray Line Broadening from Filed Aluminium and Wolfram, Acta Metall. Pergamon, 1953, 1(1), p 22–31. CrossRef
23.
go back to reference E.E.M. Noor and A. Singh, Review on the Effect of Alloying Element and Nanoparticle Additions on the Properties of Sn-Ag-Cu Solder Alloys, Solder, Surf. Mt. Technol. Emerald Group Publishing Ltd, 2014, 26(3), p 147–161. CrossRef E.E.M. Noor and A. Singh, Review on the Effect of Alloying Element and Nanoparticle Additions on the Properties of Sn-Ag-Cu Solder Alloys, Solder, Surf. Mt. Technol. Emerald Group Publishing Ltd, 2014, 26(3), p 147–161. CrossRef
24.
go back to reference J.C. Leong, L.C. Tsao, C.J. Fang, and C.P. Chu, Effect of Nano-TiO 2 Addition on the Microstructure and Bonding Strengths of Sn3.5Ag0.5Cu Composite Solder BGA Packages with Immersion Sn Surface Finish, J. Mater. Sci. Mater. Electron., 2011, 22(9), p 1443–1449. CrossRef J.C. Leong, L.C. Tsao, C.J. Fang, and C.P. Chu, Effect of Nano-TiO 2 Addition on the Microstructure and Bonding Strengths of Sn3.5Ag0.5Cu Composite Solder BGA Packages with Immersion Sn Surface Finish, J. Mater. Sci. Mater. Electron., 2011, 22(9), p 1443–1449. CrossRef
25.
go back to reference A. Gondal, T.A. Fasasi, A. Mekki, T.A. Saleh, A.M. Ilyas, T.F. Qahtan, and X. Chang, Phase Transformation and Structural Characterization Studies of Aluminum Oxide (Al2O3) Nanoparticles Synthesized Using an Elegant Pulsed Laser Ablation in Liquids Technique, Nanosci. Nanotechnol., Lett Am. Sci. Publ., 2016, 8, p 953–960. A. Gondal, T.A. Fasasi, A. Mekki, T.A. Saleh, A.M. Ilyas, T.F. Qahtan, and X. Chang, Phase Transformation and Structural Characterization Studies of Aluminum Oxide (Al2O3) Nanoparticles Synthesized Using an Elegant Pulsed Laser Ablation in Liquids Technique, Nanosci. Nanotechnol., Lett Am. Sci. Publ., 2016, 8, p 953–960.
26.
go back to reference R.M. Shalaby, Indium, Chromium and Nickel-Modified Eutectic Sn-0.7 Wt.% Cu Lead-Free Solder Rapidly Solidified from Molten State, J. Mater. Sci. Mater. Electron. Springer US, 2015, 26(9), p 6625–6632. CrossRef R.M. Shalaby, Indium, Chromium and Nickel-Modified Eutectic Sn-0.7 Wt.% Cu Lead-Free Solder Rapidly Solidified from Molten State, J. Mater. Sci. Mater. Electron. Springer US, 2015, 26(9), p 6625–6632. CrossRef
28.
go back to reference F. Stacey and R. Irvine, Theory of Melting: Thermodynamic Basis of Lindemann’s Law, Aust. J. Phys., 1977, 30(6), p 631. CrossRef F. Stacey and R. Irvine, Theory of Melting: Thermodynamic Basis of Lindemann’s Law, Aust. J. Phys., 1977, 30(6), p 631. CrossRef
30.
go back to reference Y.Y. Gafner, S.L. Gafner, I.S. Zamulin, L.V. Redel, and V.S. Baidyshev, Analysis of the Heat Capacity of Nanoclusters of FCC Metals on the Example of Al, Ni, Cu, Pd, and Au, Phys. Met. Metallogr., 2015, 116(June), p 602–609. Y.Y. Gafner, S.L. Gafner, I.S. Zamulin, L.V. Redel, and V.S. Baidyshev, Analysis of the Heat Capacity of Nanoclusters of FCC Metals on the Example of Al, Ni, Cu, Pd, and Au, Phys. Met. Metallogr., 2015, 116(June), p 602–609.
31.
go back to reference S.L. Gafner, L.V. Redel, and Y.Y. Gafner, Molecular-Dynamics Simulation of the Heat Capacity for Nickel and Copper Clusters: Shape and Size Effects, J. Exp. Theor. Phys., 2012, 114(3), p 428–439. CrossRef S.L. Gafner, L.V. Redel, and Y.Y. Gafner, Molecular-Dynamics Simulation of the Heat Capacity for Nickel and Copper Clusters: Shape and Size Effects, J. Exp. Theor. Phys., 2012, 114(3), p 428–439. CrossRef
32.
go back to reference R.M. Shalaby, Development of Holmium Doped Eutectic Sn-Ag Lead-Free Solder for Electronic Packaging, Solder. Surf. Mt. Technol., 2022, (December 2021) R.M. Shalaby, Development of Holmium Doped Eutectic Sn-Ag Lead-Free Solder for Electronic Packaging, Solder. Surf. Mt. Technol., 2022, (December 2021)
33.
go back to reference O.M. Yousri, M.H. Abdellatif, and G. Bassioni, Effect of Al 2O 3 Nanoparticles on the Mechanical and Physical Properties of Epoxy Composite, Arab. J. Sci. Eng., 2018, 43(3), p 1511–1517. CrossRef O.M. Yousri, M.H. Abdellatif, and G. Bassioni, Effect of Al 2O 3 Nanoparticles on the Mechanical and Physical Properties of Epoxy Composite, Arab. J. Sci. Eng., 2018, 43(3), p 1511–1517. CrossRef
35.
go back to reference O.L. Anderson, A Simplified Method for Calculating the Debye Temperature from Elastic Constants, J. Phys. Chem. Solids, 1963, 24, p 909–917. CrossRef O.L. Anderson, A Simplified Method for Calculating the Debye Temperature from Elastic Constants, J. Phys. Chem. Solids, 1963, 24, p 909–917. CrossRef
36.
go back to reference M. Pyke, 2002 Elastic Properties and Pressure Effects, Struct. Chem. Glas. 401–427 M. Pyke, 2002 Elastic Properties and Pressure Effects, Struct. Chem. Glas. 401–427
37.
go back to reference S. Xiong, W. Qi, Y. Cheng, B. Huang, M. Wang, and Y. Li, Universal Relation for Size Dependent Thermodynamic Properties of Metallic Nanoparticles, Phys. Chem. Chem. Phys., 2011, 13(22), p 10652–10660. CrossRef S. Xiong, W. Qi, Y. Cheng, B. Huang, M. Wang, and Y. Li, Universal Relation for Size Dependent Thermodynamic Properties of Metallic Nanoparticles, Phys. Chem. Chem. Phys., 2011, 13(22), p 10652–10660. CrossRef
38.
go back to reference P. Mishra and B.K. Pandey, Variation of Debye Temperature with Size of Nanoparticles, 3Rd Int. Conf. Condens. Matter Appl. Phys., 2020, 2220(May), p 020061. P. Mishra and B.K. Pandey, Variation of Debye Temperature with Size of Nanoparticles, 3Rd Int. Conf. Condens. Matter Appl. Phys., 2020, 2220(May), p 020061.
39.
go back to reference Y.D. Qu, X.L. Liang, X.Q. Kong, and W.J. Zhang, Size-Dependent Cohesive Energy, Melting Temperature, and Debye Temperature of Spherical Metallic Nanoparticles, Phys. Met. Metallogr., 2017, 118(6), p 528–534. CrossRef Y.D. Qu, X.L. Liang, X.Q. Kong, and W.J. Zhang, Size-Dependent Cohesive Energy, Melting Temperature, and Debye Temperature of Spherical Metallic Nanoparticles, Phys. Met. Metallogr., 2017, 118(6), p 528–534. CrossRef
40.
go back to reference Y. Tang, G.Y. Li, and Y.C. Pan, Effects of TiO2 Nanoparticles Addition on Microstructure, Microhardness and Tensile Properties of Sn-3.0Ag-0.5Cu-XTiO2 Composite Solder, Mater. Des., 2014, 55, p 574–582. CrossRef Y. Tang, G.Y. Li, and Y.C. Pan, Effects of TiO2 Nanoparticles Addition on Microstructure, Microhardness and Tensile Properties of Sn-3.0Ag-0.5Cu-XTiO2 Composite Solder, Mater. Des., 2014, 55, p 574–582. CrossRef
41.
go back to reference R.M. Shalaby, M. Kamal, E.A.M. Ali, and M.S. Gumaan, Design and Properties of New Lead-Free Solder Joints Using Sn-3.5Ag-Cu Solder, Silicon Silicon, 2018, 10(5), p 1861–1871. CrossRef R.M. Shalaby, M. Kamal, E.A.M. Ali, and M.S. Gumaan, Design and Properties of New Lead-Free Solder Joints Using Sn-3.5Ag-Cu Solder, Silicon Silicon, 2018, 10(5), p 1861–1871. CrossRef
42.
go back to reference A.E. Hammad and A.A. Ibrahiem, Enhancing the Microstructure and Tensile Creep Resistance of Sn-3.0Ag-0.5Cu Solder Alloy by Reinforcing Nano-Sized ZnO Particles, Microelectron. Reliab., 2017, 75, p 187–194. CrossRef A.E. Hammad and A.A. Ibrahiem, Enhancing the Microstructure and Tensile Creep Resistance of Sn-3.0Ag-0.5Cu Solder Alloy by Reinforcing Nano-Sized ZnO Particles, Microelectron. Reliab., 2017, 75, p 187–194. CrossRef
43.
go back to reference O. Şahin, O. Uzun, U. Kölemen, and N. Uçar, Stress Exponent Investigation of β-Sn Single Crystal by Depth-Sensing Indentation Tests, Phys. B Condens. Matter., 2007, 396(1–2), p 87–90. CrossRef O. Şahin, O. Uzun, U. Kölemen, and N. Uçar, Stress Exponent Investigation of β-Sn Single Crystal by Depth-Sensing Indentation Tests, Phys. B Condens. Matter., 2007, 396(1–2), p 87–90. CrossRef
45.
go back to reference P. Ma, Y. Jia, P. konda Gokuldoss, Z.Y.S. Yang, J. Zhao, and C. Li, Effect of Al2O3 Nanoparticles as Reinforcement on the Tensile Behavior of Al-12Si Composites, Metals (Basel)., 2017, 7(9), p 1–11. CrossRef P. Ma, Y. Jia, P. konda Gokuldoss, Z.Y.S. Yang, J. Zhao, and C. Li, Effect of Al2O3 Nanoparticles as Reinforcement on the Tensile Behavior of Al-12Si Composites, Metals (Basel)., 2017, 7(9), p 1–11. CrossRef
48.
go back to reference F. Ternero, E.S. Caballero, R. Astacio, J. Cintas, and J.M. Montes, Nickel Porous Compacts Obtained by Medium-Frequency Electrical Resistance Sintering, Mater. Basel, 2020, 13(9), p 1–15. F. Ternero, E.S. Caballero, R. Astacio, J. Cintas, and J.M. Montes, Nickel Porous Compacts Obtained by Medium-Frequency Electrical Resistance Sintering, Mater. Basel, 2020, 13(9), p 1–15.
49.
go back to reference S.M.L. Nai, J. Wei, and M. Gupta, Effect of Carbon Nanotubes on the Shear Strength and Electrical Resistivity of a Lead-Free Solder, J. Electron. Mater., 2008, 37(4), p 515–522. CrossRef S.M.L. Nai, J. Wei, and M. Gupta, Effect of Carbon Nanotubes on the Shear Strength and Electrical Resistivity of a Lead-Free Solder, J. Electron. Mater., 2008, 37(4), p 515–522. CrossRef
50.
52.
go back to reference E.E.M. Noor, A. Singh, Y.T. Chuan, and A. Review, Influence of Nano Particles Reinforced on Solder Alloy, Solder. Surf. Mt. Technol., 2013, 25(4), p 229–241. CrossRef E.E.M. Noor, A. Singh, Y.T. Chuan, and A. Review, Influence of Nano Particles Reinforced on Solder Alloy, Solder. Surf. Mt. Technol., 2013, 25(4), p 229–241. CrossRef
53.
go back to reference N.-C. Lee, “Reflow Soldering Processes and Troubleshooting: SMT, BGA, CSP and Flip Chip Technologies,” Newnes, 2002. N.-C. Lee, “Reflow Soldering Processes and Troubleshooting: SMT, BGA, CSP and Flip Chip Technologies,” Newnes, 2002.
Metadata
Title
Effect of Al2O3 Nanoparticle Addition on the Microstructure, Mechanical, Thermal, and Electrical Properties of Melt-Spun SAC355 Lead-Free Solder for Electronic Packaging
Authors
Hamed Al-sorory
Mohammed S. Gumaan
Rizk Mostafa Shalaby
Publication date
27-12-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 19/2023
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07752-x

Premium Partners