Skip to main content
Top
Published in: Journal of Material Cycles and Waste Management 2/2021

05-01-2021 | ORIGINAL ARTICLE

Effect of alkali activator concentration on waste brick powder-based ecofriendly mortar cured at ambient temperature

Authors: Mitiku Damtie Yehualaw, Chao-Lung Hwang, Duy-Hai Vo, Abraham Koyenga

Published in: Journal of Material Cycles and Waste Management | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The main goal of this research was to investigate the effect of alkali activator concentrations and fine aggregate types on the performance of waste brick powder (WBP)-based alkali-activated mortar. Ground granulated blast furnace slag was used to modify the properties of WBP. Na2SiO3 and NaOH were used as the alkali activator solutions, with Na2O content varying between 2 and 10% and the SiO2/Na2O ratio varying between 0.25 and 2. Waste ceramic sand (WCS) and recycled concrete fine aggregate (RFA) were used as the alternative fine aggregate materials to replace natural fine aggregate (NFA). The mortar mixtures were successfully developed at significantly lower alkali activators concentrations (starting from 4% Na2O and SiO2/Na2O ratio of 0.5) than previously reported in the literature. The compressive strengths of the mortar were measured between 8 and 46 MPa. The partial replacement of NFA by WCS enhanced the compressive strength of mortar. Scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy analysis were used to study the microstructural properties of mortar. Higher compressive strength and an increasingly compact microstructure were observed as Na2O content increases from 4 to 10% and as the SiO2/Na2O ratio rise from 0.5 to 1.5.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Reig L, Sanz MA, Borracherob MV, Monzób J, Sorianob L, Payáb J (2017) Compressive strength and microstructure of alkali-activated mortars with high ceramic waste content. Ceram Int 43:13622–13634CrossRef Reig L, Sanz MA, Borracherob MV, Monzób J, Sorianob L, Payáb J (2017) Compressive strength and microstructure of alkali-activated mortars with high ceramic waste content. Ceram Int 43:13622–13634CrossRef
2.
go back to reference Puertas F, García-Díaz I, Barba A, Gazulla MF, Palacios M, Gómez MP, Martínez-Ramírez S (2008) Ceramic wastes as alternative raw materials for Portland cement clinker production. Cement Concr Compos 30:798–805CrossRef Puertas F, García-Díaz I, Barba A, Gazulla MF, Palacios M, Gómez MP, Martínez-Ramírez S (2008) Ceramic wastes as alternative raw materials for Portland cement clinker production. Cement Concr Compos 30:798–805CrossRef
3.
go back to reference Carrasco MT, Puertas CR, Alonso MdM, Puertas F (2015) Alkali activated slag cements using waste glass as alternative activators. Rheological behavior, Cerámica y Vidrio 54:45–57 Carrasco MT, Puertas CR, Alonso MdM, Puertas F (2015) Alkali activated slag cements using waste glass as alternative activators. Rheological behavior, Cerámica y Vidrio 54:45–57
4.
go back to reference Shi C, Jiménez AF, Palomo A (2011) New cements for the 21st century: the pursuit of an alternative to Portland cement. Cem Concr Res 41:750–763CrossRef Shi C, Jiménez AF, Palomo A (2011) New cements for the 21st century: the pursuit of an alternative to Portland cement. Cem Concr Res 41:750–763CrossRef
5.
6.
go back to reference Singh J, Singh SP (2019) Development of alkali-activated cementitious material using copper slag. Constr Build Mater 211:73–79CrossRef Singh J, Singh SP (2019) Development of alkali-activated cementitious material using copper slag. Constr Build Mater 211:73–79CrossRef
7.
go back to reference Kürklü G (2016) The effect of high temperature on the design of blast furnace slag and coarse fly ash-based geopolymer mortar. Compos B Eng 92:9–18CrossRef Kürklü G (2016) The effect of high temperature on the design of blast furnace slag and coarse fly ash-based geopolymer mortar. Compos B Eng 92:9–18CrossRef
8.
go back to reference Aydın S, Baradan B (2013) The effect of fiber properties on high performance alkali-activated slag/silica fume mortars. Compos B Eng 45(1):63–69CrossRef Aydın S, Baradan B (2013) The effect of fiber properties on high performance alkali-activated slag/silica fume mortars. Compos B Eng 45(1):63–69CrossRef
9.
go back to reference Gruskovnjak A, Lothenbach B, Holzer L, Figi R, Winnefeld F (2006) Hydration of alkali-activated slag: comparison with ordinary Portland cement. Adv Cement Res 18:119–128CrossRef Gruskovnjak A, Lothenbach B, Holzer L, Figi R, Winnefeld F (2006) Hydration of alkali-activated slag: comparison with ordinary Portland cement. Adv Cement Res 18:119–128CrossRef
10.
go back to reference Balcikanli M, Ozbay E (2016) Optimum design of alkali activated slag concretes for the low oxygen/chloride ion permeability and thermal conductivity. Compos B Eng 91:243–256CrossRef Balcikanli M, Ozbay E (2016) Optimum design of alkali activated slag concretes for the low oxygen/chloride ion permeability and thermal conductivity. Compos B Eng 91:243–256CrossRef
11.
go back to reference Ismail I, Bernal SA, Provis JL, Nicolas RS, Hamdan S, van Deventer JSJ (2014) Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cement Concrete Compos 45:125–135CrossRef Ismail I, Bernal SA, Provis JL, Nicolas RS, Hamdan S, van Deventer JSJ (2014) Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cement Concrete Compos 45:125–135CrossRef
12.
go back to reference Provis JL, van Deventer JSJ (2007) Geopolymerisation kinetics. 1. In situ energy-dispersive X-ray diffractometry. Chem Eng Sc 62(9):2309–2317CrossRef Provis JL, van Deventer JSJ (2007) Geopolymerisation kinetics. 1. In situ energy-dispersive X-ray diffractometry. Chem Eng Sc 62(9):2309–2317CrossRef
13.
go back to reference Provis JL, van Deventer JSJ (2007) Geopolymerisation kinetics. 2. Reaction kinetic modelling. Chem Eng Sci 62(9):2318–2329CrossRef Provis JL, van Deventer JSJ (2007) Geopolymerisation kinetics. 2. Reaction kinetic modelling. Chem Eng Sci 62(9):2318–2329CrossRef
14.
go back to reference Hwang C-L, Vo D-H, Tran V-A, Yehualaw MD (2018) Effect of high MgO content on the performance of alkali-activated fine slag under water and air curing conditions. Constr Build Mater 186:503–513CrossRef Hwang C-L, Vo D-H, Tran V-A, Yehualaw MD (2018) Effect of high MgO content on the performance of alkali-activated fine slag under water and air curing conditions. Constr Build Mater 186:503–513CrossRef
15.
go back to reference Aydın S, Baradan B (2014) Effect of activator type and content on properties of alkali-activated slag mortars. Compos B Eng 57:166–172CrossRef Aydın S, Baradan B (2014) Effect of activator type and content on properties of alkali-activated slag mortars. Compos B Eng 57:166–172CrossRef
16.
go back to reference Al-Otaibi S (2008) Durability of concrete incorporating GGBS activated by water-glass. Constr Build Mater 22(10):2059–2067CrossRef Al-Otaibi S (2008) Durability of concrete incorporating GGBS activated by water-glass. Constr Build Mater 22(10):2059–2067CrossRef
17.
go back to reference Hardjito D, Wallah SE, Sumajouw DM, Rangan BV (2015) On the development of fly ash-based geopolymer concrete. ACI Mater J 101(6):77–86 Hardjito D, Wallah SE, Sumajouw DM, Rangan BV (2015) On the development of fly ash-based geopolymer concrete. ACI Mater J 101(6):77–86
18.
go back to reference Chindaprasirt P, Chareerat T, Sirivivatnanon V (2007) Workability and strength of coarse high calcium fly ash geopolymer. Cement Concr Compos 29(3):224–229CrossRef Chindaprasirt P, Chareerat T, Sirivivatnanon V (2007) Workability and strength of coarse high calcium fly ash geopolymer. Cement Concr Compos 29(3):224–229CrossRef
19.
go back to reference Palacios M, Puertas F (2007) Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes. Cem Concr Res 37(5):691–702CrossRef Palacios M, Puertas F (2007) Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes. Cem Concr Res 37(5):691–702CrossRef
20.
go back to reference Puertas F, Torres-Carrasco M (2014) Use of glass waste as an activator in the preparation of alkali-activated slag. Mech Strength Paste Charact Cement Concrete Res 57:95–104CrossRef Puertas F, Torres-Carrasco M (2014) Use of glass waste as an activator in the preparation of alkali-activated slag. Mech Strength Paste Charact Cement Concrete Res 57:95–104CrossRef
21.
go back to reference Carrasco M, Puertas F (2014) Sodium silicate solutions from dissolution of glass wastes. Statistical analysis. Materiales de Construcción 64:e014CrossRef Carrasco M, Puertas F (2014) Sodium silicate solutions from dissolution of glass wastes. Statistical analysis. Materiales de Construcción 64:e014CrossRef
22.
go back to reference Palomo A, Krivenko P, García-Lodeiro I, Kavalerova E, Maltseva O, Fernández-Jiménez A (2014) A review on alkaline activation: new analytical perspectives. Materiales de Construccion 64:e022CrossRef Palomo A, Krivenko P, García-Lodeiro I, Kavalerova E, Maltseva O, Fernández-Jiménez A (2014) A review on alkaline activation: new analytical perspectives. Materiales de Construccion 64:e022CrossRef
23.
go back to reference Rashad AM, Zeedan SR (2011) The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load. Constr Build Mater 25(7):3098–3107CrossRef Rashad AM, Zeedan SR (2011) The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load. Constr Build Mater 25(7):3098–3107CrossRef
24.
go back to reference Sun Z, Cui H, An H, Tao D, Xu Y, Zhai J, Li Q (2013) Synthesis and thermal behavior of geopolymer-type material from waste ceramic. Constr Build Mater 49:281–287CrossRef Sun Z, Cui H, An H, Tao D, Xu Y, Zhai J, Li Q (2013) Synthesis and thermal behavior of geopolymer-type material from waste ceramic. Constr Build Mater 49:281–287CrossRef
25.
go back to reference Peyne J, Joussein E, Gautron J, Doudeau J, Rossignol S (2017) Feasibility of producing geopolymer binder based on a brick clay mixture. Ceram Int 43:9860–9871CrossRef Peyne J, Joussein E, Gautron J, Doudeau J, Rossignol S (2017) Feasibility of producing geopolymer binder based on a brick clay mixture. Ceram Int 43:9860–9871CrossRef
26.
go back to reference Ge Z, Wang Y, Sun R, Wu X, Guan Y (2015) Influence of ground waste clay brick on properties of fresh and hardened concrete. Constr Build Mater 98:128–136CrossRef Ge Z, Wang Y, Sun R, Wu X, Guan Y (2015) Influence of ground waste clay brick on properties of fresh and hardened concrete. Constr Build Mater 98:128–136CrossRef
27.
go back to reference Reig L, Tashima MM, Borrachero MV, Monzó J, Cheeseman CR, Payá J (2013) Properties and microstructure of alkali-activated red clay brick waste. Constr Build Mater 43:98–106CrossRef Reig L, Tashima MM, Borrachero MV, Monzó J, Cheeseman CR, Payá J (2013) Properties and microstructure of alkali-activated red clay brick waste. Constr Build Mater 43:98–106CrossRef
28.
go back to reference Tuyan M, Cakir OA, Ramyar K (2018) Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer. Compos B 135:242–252CrossRef Tuyan M, Cakir OA, Ramyar K (2018) Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer. Compos B 135:242–252CrossRef
29.
go back to reference Hwang C-L, Yehualaw MD, Vo D-H, Huynh T-P, Largo A (2019) Performance evaluation of alkali activated mortar containing high volume of waste brick powder blended with ground granulated blast furnace slag cured at ambient temperature. Constr Build Mater 223:657–667CrossRef Hwang C-L, Yehualaw MD, Vo D-H, Huynh T-P, Largo A (2019) Performance evaluation of alkali activated mortar containing high volume of waste brick powder blended with ground granulated blast furnace slag cured at ambient temperature. Constr Build Mater 223:657–667CrossRef
30.
go back to reference Halicka A, Ogrodnik P, Zegardlo B (2013) Using ceramic sanitary ware waste as concrete aggregate. Constr Build Mater 48:295–305CrossRef Halicka A, Ogrodnik P, Zegardlo B (2013) Using ceramic sanitary ware waste as concrete aggregate. Constr Build Mater 48:295–305CrossRef
31.
go back to reference Higashiyama H, Sappakittipakorn M, Sano M, Yagishita F (2012) Chloride ion penetration into mortar containing ceramic waste aggregate. Constr Build Mater 33:48–54CrossRef Higashiyama H, Sappakittipakorn M, Sano M, Yagishita F (2012) Chloride ion penetration into mortar containing ceramic waste aggregate. Constr Build Mater 33:48–54CrossRef
32.
go back to reference Velay-Lizancos M, Martinez-Lage I, Azenha M, Vázquez-Burgo P (2016) Influence of temperature in the evolution of compressive strength and in its correlations with UPV in eco-concretes with recycled materials. Constr Build Mater 124:276–286CrossRef Velay-Lizancos M, Martinez-Lage I, Azenha M, Vázquez-Burgo P (2016) Influence of temperature in the evolution of compressive strength and in its correlations with UPV in eco-concretes with recycled materials. Constr Build Mater 124:276–286CrossRef
33.
go back to reference Khatib JM (2005) Properties of concrete incorporating fine recycled aggregate. Cement Concr Res 35(4):763–769CrossRef Khatib JM (2005) Properties of concrete incorporating fine recycled aggregate. Cement Concr Res 35(4):763–769CrossRef
34.
go back to reference Evangelista L, de Brito J (2007) Mechanical behaviour of concrete made with fine recycled concrete aggregates. Cement Concr Compos 29(5):397–401CrossRef Evangelista L, de Brito J (2007) Mechanical behaviour of concrete made with fine recycled concrete aggregates. Cement Concr Compos 29(5):397–401CrossRef
35.
go back to reference Phair J, Van Deventer J (2001) Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers. Miner Eng 14:289–304CrossRef Phair J, Van Deventer J (2001) Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers. Miner Eng 14:289–304CrossRef
36.
go back to reference Silva RV, de Brito J, Dhir RK (2018) Fresh-state performance of recycled aggregate concrete: a review. Constr Build Mater 178:19–31CrossRef Silva RV, de Brito J, Dhir RK (2018) Fresh-state performance of recycled aggregate concrete: a review. Constr Build Mater 178:19–31CrossRef
37.
go back to reference Abed M, Nemes R, Tayeh BA (2018) Properties of self-compacting high-strength concrete containing multiple use of recycled aggregate. J King Saud Univ Eng Sci 32:108–114 Abed M, Nemes R, Tayeh BA (2018) Properties of self-compacting high-strength concrete containing multiple use of recycled aggregate. J King Saud Univ Eng Sci 32:108–114
38.
go back to reference Hwang CL, Damtie Yehualaw M, Vo DH, Huynh TP (2019) Development of high-strength alkali-activated pastes containing high volumes of waste brick and ceramic powders. Constr Build Mater 218:519–529CrossRef Hwang CL, Damtie Yehualaw M, Vo DH, Huynh TP (2019) Development of high-strength alkali-activated pastes containing high volumes of waste brick and ceramic powders. Constr Build Mater 218:519–529CrossRef
39.
go back to reference Pacheco-Torgal F, Castro-Gomes J, Jalali S (2008) Alkali-activated binders: a review: part 1. Historical background, terminology, reaction mechanisms and hydration products. Constr Build Mater 22(7):1305–1314CrossRef Pacheco-Torgal F, Castro-Gomes J, Jalali S (2008) Alkali-activated binders: a review: part 1. Historical background, terminology, reaction mechanisms and hydration products. Constr Build Mater 22(7):1305–1314CrossRef
40.
go back to reference Rakhimova NR, Rakhimov RZ (2015) Alkali-activated cements and mortars based on blast furnace slag and red clay brick waste. Mater Des 85:324–331CrossRef Rakhimova NR, Rakhimov RZ (2015) Alkali-activated cements and mortars based on blast furnace slag and red clay brick waste. Mater Des 85:324–331CrossRef
41.
go back to reference Lampris C, Lupo R, Cheeseman CR (2009) Geopolymerisation of silt generated from construction and demolition waste washing plants. Waste Manage 29(1):368–373CrossRef Lampris C, Lupo R, Cheeseman CR (2009) Geopolymerisation of silt generated from construction and demolition waste washing plants. Waste Manage 29(1):368–373CrossRef
42.
go back to reference Criado M, Jimenez AF, Palomo A (2007) Alkali activation of fly ash: effect of the SiO2/Na2O ratio part I: FTIR study. Microporous Mesoporous Mater 106:180–191CrossRef Criado M, Jimenez AF, Palomo A (2007) Alkali activation of fly ash: effect of the SiO2/Na2O ratio part I: FTIR study. Microporous Mesoporous Mater 106:180–191CrossRef
43.
go back to reference Fernández-Jimenez A, de la Torre AG, Palomo A, López-Olmo G, Alonso MM, Aranda MAG (2006) Quantitative determination of phases in the alkali activation of fly ash. Part I. Potential ash reactivity. Fuel 85(5):625–634CrossRef Fernández-Jimenez A, de la Torre AG, Palomo A, López-Olmo G, Alonso MM, Aranda MAG (2006) Quantitative determination of phases in the alkali activation of fly ash. Part I. Potential ash reactivity. Fuel 85(5):625–634CrossRef
44.
go back to reference Torkittikul P, Chaipanich A (2010) Utilization of ceramic waste as fine aggregate within Portland cement and fly ash concretes. Cement Concr Compos 32(6):440–449CrossRef Torkittikul P, Chaipanich A (2010) Utilization of ceramic waste as fine aggregate within Portland cement and fly ash concretes. Cement Concr Compos 32(6):440–449CrossRef
45.
go back to reference Higashiyama H, Yagishita F, Sano M, Takahashi O (2012) Compressive strength and resistance to chloride penetration of mortars using ceramic waste as fine aggregate. Constr Build Mater 26:96–101CrossRef Higashiyama H, Yagishita F, Sano M, Takahashi O (2012) Compressive strength and resistance to chloride penetration of mortars using ceramic waste as fine aggregate. Constr Build Mater 26:96–101CrossRef
46.
go back to reference Alves AV, Vieira TF, de Brito J, Correia JR (2014) Mechanical properties of structural concrete with fine recycled ceramic aggregates. Constr Build Mater 64:103–113CrossRef Alves AV, Vieira TF, de Brito J, Correia JR (2014) Mechanical properties of structural concrete with fine recycled ceramic aggregates. Constr Build Mater 64:103–113CrossRef
47.
go back to reference Kwan WH, Ramli M, Kam KJ, Sulieman MZ (2012) Influence of the amount of recycled coarse aggregate in concrete design and durability properties. Constr Build Mater 26(1):565–573 Kwan WH, Ramli M, Kam KJ, Sulieman MZ (2012) Influence of the amount of recycled coarse aggregate in concrete design and durability properties. Constr Build Mater 26(1):565–573
48.
go back to reference Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, van Deventer JSJ (2005) Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf A 269(1):47–58CrossRef Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, van Deventer JSJ (2005) Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf A 269(1):47–58CrossRef
49.
go back to reference Allahverdi A, Kani EN (2013) Use of construction and demolition waste (CDW) for alkali-activated or geopolymer cements. Handbook of recycled concrete and demolition waste. Elsevier, Amsterdam, pp 439–475CrossRef Allahverdi A, Kani EN (2013) Use of construction and demolition waste (CDW) for alkali-activated or geopolymer cements. Handbook of recycled concrete and demolition waste. Elsevier, Amsterdam, pp 439–475CrossRef
50.
go back to reference Tran T, Kwon H-M (2018) Influence of activator Na2O concentration on residual strengths of alkali-activated slag mortar upon exposure to elevated temperatures. Materials 11(8):1296CrossRef Tran T, Kwon H-M (2018) Influence of activator Na2O concentration on residual strengths of alkali-activated slag mortar upon exposure to elevated temperatures. Materials 11(8):1296CrossRef
51.
go back to reference Shen W, Liu Y, Wang Z, Cao L, Wu D, Wang Y, Ji X (2018) Influence of manufactured sand’s characteristics on its concrete performance. Constr Build Mater 172:574–583CrossRef Shen W, Liu Y, Wang Z, Cao L, Wu D, Wang Y, Ji X (2018) Influence of manufactured sand’s characteristics on its concrete performance. Constr Build Mater 172:574–583CrossRef
52.
go back to reference Rashad AM, Bai Y, Basheer PAM, Collier NC, Milestone NB (2012) Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature. Cem Concr Res 42(2):333–343CrossRef Rashad AM, Bai Y, Basheer PAM, Collier NC, Milestone NB (2012) Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature. Cem Concr Res 42(2):333–343CrossRef
53.
go back to reference Bilim C, Atiş CD (2012) Alkali activation of mortars containing different replacement levels of ground granulated blast furnace slag. Constr Build Mater 28(1):708–712CrossRef Bilim C, Atiş CD (2012) Alkali activation of mortars containing different replacement levels of ground granulated blast furnace slag. Constr Build Mater 28(1):708–712CrossRef
54.
go back to reference Rashad AM, Zeedan SR, Hassan AA (2016) Influence of the activator concentration of sodium silicate on the thermal properties of alkali-activated slag pastes. Constr Build Mater 102:811–820CrossRef Rashad AM, Zeedan SR, Hassan AA (2016) Influence of the activator concentration of sodium silicate on the thermal properties of alkali-activated slag pastes. Constr Build Mater 102:811–820CrossRef
55.
go back to reference Duran Atiş C, Bilim C, Çelik Ö, Karahan O (2009) Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr Build Mater 23(1):548–555CrossRef Duran Atiş C, Bilim C, Çelik Ö, Karahan O (2009) Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr Build Mater 23(1):548–555CrossRef
56.
go back to reference Duxson P, Lukey GC, Separovic F, van Deventer JSJ (2005) Effect of alkali cations on aluminum incorporation in geopolymeric gels. Ind Eng Chem Res 44(4):832–839CrossRef Duxson P, Lukey GC, Separovic F, van Deventer JSJ (2005) Effect of alkali cations on aluminum incorporation in geopolymeric gels. Ind Eng Chem Res 44(4):832–839CrossRef
57.
go back to reference Xu W, Lo TY, Memon SA (2012) Microstructure and reactivity of rich husk ash. Constr Build Mater 29:541–547CrossRef Xu W, Lo TY, Memon SA (2012) Microstructure and reactivity of rich husk ash. Constr Build Mater 29:541–547CrossRef
58.
go back to reference He J, Jie Y, Zhang J, Yu Y, Zhang G (2013) Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cement Concr Compos 37:108–118CrossRef He J, Jie Y, Zhang J, Yu Y, Zhang G (2013) Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cement Concr Compos 37:108–118CrossRef
59.
go back to reference Liew YM, Kamarudin H, Al Bakri AM, Bnhussain M, Luqman M, Nizar IK, Ruzaidi CM, Heah CY (2012) Optimization of solids-to-liquid and alkali activator ratios of calcined kaolin geopolymeric powder. Constr Build Mater 37:440–451CrossRef Liew YM, Kamarudin H, Al Bakri AM, Bnhussain M, Luqman M, Nizar IK, Ruzaidi CM, Heah CY (2012) Optimization of solids-to-liquid and alkali activator ratios of calcined kaolin geopolymeric powder. Constr Build Mater 37:440–451CrossRef
60.
go back to reference Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42(9):2917–2933CrossRef Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42(9):2917–2933CrossRef
61.
go back to reference Zawrah MF, Gado RA, Feltin N, Ducourtieux S, Devoille L (2016) Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blast-furnace slag for geopolymer production. Process Saf Environ Prot 103:237–251CrossRef Zawrah MF, Gado RA, Feltin N, Ducourtieux S, Devoille L (2016) Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blast-furnace slag for geopolymer production. Process Saf Environ Prot 103:237–251CrossRef
62.
go back to reference Bernal SA, de Gutierrez RM, Provis JL, Rose V (2010) Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cement Concr Res 40(6):898–907CrossRef Bernal SA, de Gutierrez RM, Provis JL, Rose V (2010) Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cement Concr Res 40(6):898–907CrossRef
63.
go back to reference Phair JW, Van Deventer JSJ (2002) Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers. Int J Miner Process 66(1):121–143CrossRef Phair JW, Van Deventer JSJ (2002) Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers. Int J Miner Process 66(1):121–143CrossRef
64.
go back to reference Jimenez AF, Palomo A (2005) Composition and microstructure of alkali activated fly ash binder: Effect of the activator. Cement Concr Res 35:1984–1992CrossRef Jimenez AF, Palomo A (2005) Composition and microstructure of alkali activated fly ash binder: Effect of the activator. Cement Concr Res 35:1984–1992CrossRef
Metadata
Title
Effect of alkali activator concentration on waste brick powder-based ecofriendly mortar cured at ambient temperature
Authors
Mitiku Damtie Yehualaw
Chao-Lung Hwang
Duy-Hai Vo
Abraham Koyenga
Publication date
05-01-2021
Publisher
Springer Japan
Published in
Journal of Material Cycles and Waste Management / Issue 2/2021
Print ISSN: 1438-4957
Electronic ISSN: 1611-8227
DOI
https://doi.org/10.1007/s10163-020-01164-6

Other articles of this Issue 2/2021

Journal of Material Cycles and Waste Management 2/2021 Go to the issue