Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

01-04-2014 | Issue 4/2014

Journal of Materials Engineering and Performance 4/2014

Effect of Alloy Addition Method on Thermal Fatigue of Cr5-Deposited Metal

Journal:
Journal of Materials Engineering and Performance > Issue 4/2014
Authors:
Qingbao Wang, Zhuoxin Li, Yaowu Shi

Abstract

Given the same alloy composition in Cr5 deposited surfacing metal, the influence of two different methods of adding Cr and C in the flux-cored welding wire (1#-chromium carbide powder; 2#-graphite and chromium powder) was studied on the thermal fatigue (TF) performance of the deposited metal. Results show that (1) for either as-welded or tempered state, after the same number of thermal cycles, the crack length of specimen 1# was greater than specimen 2#; (2) it took about 200 more cycles for the initiation of cracking and failure cracking on specimen 2# than on specimen 1#; and (3) after the same number of cycles, the length of failure cracks of the as-welded state was greater than the tempered state. Studies of the microscopic structure, number of inclusions, and grain size of both types of specimens show that only a portion of chromium carbide added in 1# flux-cored wire was oxidized in high-temperature molten droplets or weld pool, plenty of incompletely decomposed chromium carbide grains and those generated in site lead to higher amount of inclusions in the deposited metal, compared with 2#. In addition, the boundary between inclusions and matrix was distinct, and the contents of S and P were higher in 1#; a larger proportion of residual austenite and twin structures, slower transformation of the residual austenite during tempering, and coarser primitive austenite and matrix grains were found in 1#. These findings suggest that optimization of the method of adding alloy elements might be an effective and cost-efficient way of improving the TF performance of deposited metal.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 4/2014

Journal of Materials Engineering and Performance 4/2014 Go to the issue

Premium Partner

    Image Credits