Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Experiments in Fluids 8/2019

01-08-2019 | Research Article

Effect of bubble distribution on wall drag in turbulent channel flow

Authors: Narsing K. Jha, Anubhav Bhatt, Raghuraman N. Govardhan

Published in: Experiments in Fluids | Issue 8/2019

Login to get access
share
SHARE

Abstract

Skin-friction drag reduction in (water) turbulent boundary layers using bubble injection has been studied for some time. Ceccio (Annu Rev Fluid Mech 42:183–203, 2010) and Murai (Exp Fluids 55(7):1–28, 2014) have compiled drag reduction data from a number of different studies and facilities, and highlighted the large differences and scatter in the data even at the same bubble void fraction. Motivated by this, in the present work, we experimentally investigate within a single horizontal turbulent channel facility, drag modification using bubbles over a wide range of bubble void fraction (\(0< \alpha < 0.15\)), channel Reynolds number (22,500 \(< Re<\) 67,500), and the orientation of bubble injection (top/ bottom wall). In each of the cases, we have simultaneously measured drag modification and visualized the bubble dynamics. The drag modification is obtained from measurement of the mean pressure drop at four different vertical locations within the channel. The results show that even in the same facility, the drag reduction obtained at a fixed void fraction (\(\alpha\)) can be very different due to changes in bubble dynamics caused by changes in the other flow parameters. The visualizations show a number of bubble dynamics regimes depending on the parameters, with possibilities of both increased and decreased drag compared to the base (no bubble) case. The measurements for the bubble cases show significant vertical variations in the measured pressure drop within the channel, with these vertical variations being also dependent on the bubble distribution/dynamics. Interestingly, in some cases, the pressure drop at a given height even becomes negative, although the integrated pressure drop over the channel height, which is related to the overall drag, remains positive but lower than the base case. In terms of the overall drag, the top-wall injection is observed to give good drag reduction over a wide range of flow Re and \(\alpha\), but is seen to saturate beyond a threshold \(\alpha\). In contrast, the bottom-wall injection case shows that drag continuously decreases with \(\alpha\) at high channel Re, while at low channel Re, the drag is found to continually increase with \(\alpha\). The present study shows a maximum of about 60% increase and a similar 60% reduction in wall drag over the entire range of conditions investigated. For each of the bubble wall injection orientations (bottom/top/both wall), contour plots of drag modification and gain factor (fractional drag reduction per unit void fraction) are presented in the plane of \(\alpha\) and Re along with the corresponding bubble dynamics, which helps to delineate the different regimes seen in such bubbly channel flows.
Graphic abstract
Literature
go back to reference Ceccio SL (2010) Friction drag reduction of external flows with bubble and gas injection. Annu Rev Fluid Mech 42:183–203 CrossRef Ceccio SL (2010) Friction drag reduction of external flows with bubble and gas injection. Annu Rev Fluid Mech 42:183–203 CrossRef
go back to reference Dean R (1978) Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. J Fluids Eng 100(2):215–223 CrossRef Dean R (1978) Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. J Fluids Eng 100(2):215–223 CrossRef
go back to reference Elbing BR, Winkel ES, Lay KA, Ceccio SL, Dowling DR, Perlin M (2008) Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction. J Fluid Mech 612:201–236 CrossRef Elbing BR, Winkel ES, Lay KA, Ceccio SL, Dowling DR, Perlin M (2008) Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction. J Fluid Mech 612:201–236 CrossRef
go back to reference Elbing BR, Mäkiharju S, Wiggins A, Perlin M, Dowling DR, Ceccio SL (2013) On the scaling of air layer drag reduction. J Fluid Mech 717:484–513 CrossRef Elbing BR, Mäkiharju S, Wiggins A, Perlin M, Dowling DR, Ceccio SL (2013) On the scaling of air layer drag reduction. J Fluid Mech 717:484–513 CrossRef
go back to reference Ferrante A, Elghobashi S (2004) On the physical mechanisms of drag reduction in a spatially developing turbulent boundary layer laden with microbubbles. J Fluid Mech 503:345–355 CrossRef Ferrante A, Elghobashi S (2004) On the physical mechanisms of drag reduction in a spatially developing turbulent boundary layer laden with microbubbles. J Fluid Mech 503:345–355 CrossRef
go back to reference Gabillet C, Colin C, Fabre J (2002) Experimental study of bubble injection in a turbulent boundary layer. Int J Multiph Flow 28(4):553–578 CrossRef Gabillet C, Colin C, Fabre J (2002) Experimental study of bubble injection in a turbulent boundary layer. Int J Multiph Flow 28(4):553–578 CrossRef
go back to reference Guin MM, Kato H, Yamaguchi H, Maeda M, Miyanaga M (1996) Reduction of skin friction by microbubbles and its relation with near-wall bubble concentration in a channel. J Mar Sci Technol 1(5):241–254 CrossRef Guin MM, Kato H, Yamaguchi H, Maeda M, Miyanaga M (1996) Reduction of skin friction by microbubbles and its relation with near-wall bubble concentration in a channel. J Mar Sci Technol 1(5):241–254 CrossRef
go back to reference Hara K, Suzuki T, Yamamoto F (2011) Image analysis applied to study on frictional-drag reduction by electrolytic microbubbles in a turbulent channel flow. Exp Fluids 50(3):715–727 CrossRef Hara K, Suzuki T, Yamamoto F (2011) Image analysis applied to study on frictional-drag reduction by electrolytic microbubbles in a turbulent channel flow. Exp Fluids 50(3):715–727 CrossRef
go back to reference Jacob B, Olivieri A, Miozzi M, Campana EF, Piva R (2010) Drag reduction by microbubbles in a turbulent boundary layer. Phys Fluids (1994–present) 22(11):115,104 CrossRef Jacob B, Olivieri A, Miozzi M, Campana EF, Piva R (2010) Drag reduction by microbubbles in a turbulent boundary layer. Phys Fluids (1994–present) 22(11):115,104 CrossRef
go back to reference Jha NK, Govardhan R (2015) Interaction of a vortex ring with a single bubble: bubble and vorticity dynamics. J Fluid Mech 773:460–497 CrossRef Jha NK, Govardhan R (2015) Interaction of a vortex ring with a single bubble: bubble and vorticity dynamics. J Fluid Mech 773:460–497 CrossRef
go back to reference Kumagai I, Takahashi Y, Murai Y (2015) Power-saving device for air bubble generation using a hydrofoil to reduce ship drag: theory, experiments, and application to ships. Ocean Eng 95:183–194 CrossRef Kumagai I, Takahashi Y, Murai Y (2015) Power-saving device for air bubble generation using a hydrofoil to reduce ship drag: theory, experiments, and application to ships. Ocean Eng 95:183–194 CrossRef
go back to reference Latorre R, Miller A, Philips R (2003) Micro-bubble resistance reduction on a model ses catamaran. Ocean Eng 30(17):2297–2309 CrossRef Latorre R, Miller A, Philips R (2003) Micro-bubble resistance reduction on a model ses catamaran. Ocean Eng 30(17):2297–2309 CrossRef
go back to reference Lo T, L’vov VS, Procaccia I (2006) Drag reduction by compressible bubbles. Phys Rev E 73(3):036,308 CrossRef Lo T, L’vov VS, Procaccia I (2006) Drag reduction by compressible bubbles. Phys Rev E 73(3):036,308 CrossRef
go back to reference Lu J, Fernández A, Tryggvason G (2005) The effect of bubbles on the wall drag in a turbulent channel flow. Phys Fluids (1994–present) 17(9):095,102 CrossRef Lu J, Fernández A, Tryggvason G (2005) The effect of bubbles on the wall drag in a turbulent channel flow. Phys Fluids (1994–present) 17(9):095,102 CrossRef
go back to reference L’vov VS, Pomyalov A, Procaccia I, Tiberkevich V (2005) Drag reduction by microbubbles in turbulent flows: the limit of minute bubbles. Phys Rev Lett 94(17):174,502 CrossRef L’vov VS, Pomyalov A, Procaccia I, Tiberkevich V (2005) Drag reduction by microbubbles in turbulent flows: the limit of minute bubbles. Phys Rev Lett 94(17):174,502 CrossRef
go back to reference Madavan N, Deutsch S, Merkle C (1985) Measurements of local skin friction in a microbubble-modified turbulent boundary layer. J Fluid Mech 156:237–256 CrossRef Madavan N, Deutsch S, Merkle C (1985) Measurements of local skin friction in a microbubble-modified turbulent boundary layer. J Fluid Mech 156:237–256 CrossRef
go back to reference McCormick ME, Bhattacharyya R (1973) Drag reduction of a submersible hull by electrolysis. Nav Eng J 85(2):11–16 CrossRef McCormick ME, Bhattacharyya R (1973) Drag reduction of a submersible hull by electrolysis. Nav Eng J 85(2):11–16 CrossRef
go back to reference Meng JC, Uhlman J (1998) Microbubble formation and splitting in a turbulent boundary layer for turbulence reduction. In: Proceedings of the international symposium on seawater drag reduction, vol 341355 Meng JC, Uhlman J (1998) Microbubble formation and splitting in a turbulent boundary layer for turbulence reduction. In: Proceedings of the international symposium on seawater drag reduction, vol 341355
go back to reference Mizokami S, Kawakita C, Kodan Y, Takano S, Higasa S, Shigenaga R (2010) Experimental study of air lubrication method and verification of effects on actual hull by means of sea trial. Mitsubishi Heavy Ind Tech Rev 47(3):41–47 Mizokami S, Kawakita C, Kodan Y, Takano S, Higasa S, Shigenaga R (2010) Experimental study of air lubrication method and verification of effects on actual hull by means of sea trial. Mitsubishi Heavy Ind Tech Rev 47(3):41–47
go back to reference Monty JP (2005) Developments in smooth wall turbulent duct flows. PhD thesis, University of Melbourne, Department of Mechanical and Manufacturing Engineering Monty JP (2005) Developments in smooth wall turbulent duct flows. PhD thesis, University of Melbourne, Department of Mechanical and Manufacturing Engineering
go back to reference Murai Y (2014) Frictional drag reduction by bubble injection. Exp Fluids 55(7):1–28 CrossRef Murai Y (2014) Frictional drag reduction by bubble injection. Exp Fluids 55(7):1–28 CrossRef
go back to reference Murai Y, Oishi Y, Takeda Y, Yamamoto F (2006) Turbulent shear stress profiles in a bubbly channel flow assessed by particle tracking velocimetry. Exp Fluids 41(2):343–352 CrossRef Murai Y, Oishi Y, Takeda Y, Yamamoto F (2006) Turbulent shear stress profiles in a bubbly channel flow assessed by particle tracking velocimetry. Exp Fluids 41(2):343–352 CrossRef
go back to reference Oishi Y, Murai Y, Tasaka Y, Yasushi T (2009) Frictional drag reduction by wavy advection of deformable bubbles. In: Journal of physics: conference series, vol 147. IOP Publishing, p 012020 Oishi Y, Murai Y, Tasaka Y, Yasushi T (2009) Frictional drag reduction by wavy advection of deformable bubbles. In: Journal of physics: conference series, vol 147. IOP Publishing, p 012020
go back to reference Park HJ, Oishi Y, Tasaka Y, Murai Y (2016) Void waves propagating in the bubbly two-phase turbulent boundary layer beneath a flat-bottom model ship during drag reduction. Exp Fluids 57(12):178 CrossRef Park HJ, Oishi Y, Tasaka Y, Murai Y (2016) Void waves propagating in the bubbly two-phase turbulent boundary layer beneath a flat-bottom model ship during drag reduction. Exp Fluids 57(12):178 CrossRef
go back to reference Park HJ, Tasaka Y, Murai Y (2018) Bubbly drag reduction accompanied by void wave generation inside turbulent boundary layers. Exp Fluids 59(11):166 CrossRef Park HJ, Tasaka Y, Murai Y (2018) Bubbly drag reduction accompanied by void wave generation inside turbulent boundary layers. Exp Fluids 59(11):166 CrossRef
go back to reference Rothstein JP (2010) Slip on superhydrophobic surfaces. Annu Rev Fluid Mech 42:89–109 CrossRef Rothstein JP (2010) Slip on superhydrophobic surfaces. Annu Rev Fluid Mech 42:89–109 CrossRef
go back to reference Sanders WC, Winkel ES, Dowling DR, Perlin M, Ceccio SL (2006) Bubble friction drag reduction in a high-Reynolds-number flat-plate turbulent boundary layer. J Fluid Mech 552:353–380 CrossRef Sanders WC, Winkel ES, Dowling DR, Perlin M, Ceccio SL (2006) Bubble friction drag reduction in a high-Reynolds-number flat-plate turbulent boundary layer. J Fluid Mech 552:353–380 CrossRef
go back to reference Sridhar G, Katz J (1999) Effect of entrained bubbles on the structure of vortex rings. J Fluid Mech 397(1):171–202 CrossRef Sridhar G, Katz J (1999) Effect of entrained bubbles on the structure of vortex rings. J Fluid Mech 397(1):171–202 CrossRef
go back to reference Tagawa Y, Mercado JM, Prakash VN, Calzavarini E, Sun C, Lohse D (2012) Three-dimensional Lagrangian Voronoï analysis for clustering of particles and bubbles in turbulence. J Fluid Mech 693:201–215 CrossRef Tagawa Y, Mercado JM, Prakash VN, Calzavarini E, Sun C, Lohse D (2012) Three-dimensional Lagrangian Voronoï analysis for clustering of particles and bubbles in turbulence. J Fluid Mech 693:201–215 CrossRef
go back to reference Van Gils DP, Narezo Guzman D, Sun C, Lohse D (2013) The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor–Couette flow. J Fluid Mech 722:317–347 CrossRef Van Gils DP, Narezo Guzman D, Sun C, Lohse D (2013) The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor–Couette flow. J Fluid Mech 722:317–347 CrossRef
go back to reference Verschoof RA, van der Veen RC, Sun C, Lohse D (2016) Bubble drag reduction requires large bubbles. Phys Rev Lett 117(10):104,502 CrossRef Verschoof RA, van der Veen RC, Sun C, Lohse D (2016) Bubble drag reduction requires large bubbles. Phys Rev Lett 117(10):104,502 CrossRef
go back to reference Wei T (1987) Reynolds number effects on the small scale structure of a turbulent channel flow. PhD thesis, University of Michigan Wei T (1987) Reynolds number effects on the small scale structure of a turbulent channel flow. PhD thesis, University of Michigan
go back to reference White CM, Mungal MG (2008) Mechanics and prediction of turbulent drag reduction with polymer additives. Annu Rev Fluid Mech 40:235–256 MathSciNetCrossRef White CM, Mungal MG (2008) Mechanics and prediction of turbulent drag reduction with polymer additives. Annu Rev Fluid Mech 40:235–256 MathSciNetCrossRef
go back to reference Zanoun ES, Durst F, Nagib H (2003) Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows. Phys Fluids (1994–present) 15(10):3079–3089 CrossRef Zanoun ES, Durst F, Nagib H (2003) Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows. Phys Fluids (1994–present) 15(10):3079–3089 CrossRef
Metadata
Title
Effect of bubble distribution on wall drag in turbulent channel flow
Authors
Narsing K. Jha
Anubhav Bhatt
Raghuraman N. Govardhan
Publication date
01-08-2019
Publisher
Springer Berlin Heidelberg
Published in
Experiments in Fluids / Issue 8/2019
Print ISSN: 0723-4864
Electronic ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-019-2773-7

Other articles of this Issue 8/2019

Experiments in Fluids 8/2019 Go to the issue

Premium Partners