Skip to main content
Top

2018 | OriginalPaper | Chapter

Effect of Ca on the Microstructure and Mechanical Properties in Mg Alloys

Authors : E. I. Andritsos, G. C. G. Skinner, A. T. Paxton

Published in: Magnesium Technology 2018

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Rare Earth (RE)-free Mg alloys suffer from low formability due to strong textures and highly anisotropic deformation modes. In the present study, we examine the effects of Ca addition on microstructure and mechanical properties of Mg–Li–Ca and Mg–Zn–Ca alloys. Based on experimental observations, Ca is reported as the element that should solid-solution strengthen Mg–Li alloys due to its significant size mismatch and weaken the texture in Mg–Zn alloys, similarly to the RE contribution in Mg alloys. Using the density functional theory (DFT) we examine the intrinsic type II stacking faults in the basal and pyramidal I planes. We try different alloy compositions in order to understand the solid-solution effect on the different stacking faults and reduce the high plastic anisotropy in Mg alloys mechanical properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. Lu, L. Lu, and S. Suresh. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science, 324(5925):349–352, 2009. K. Lu, L. Lu, and S. Suresh. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science, 324(5925):349–352, 2009.
2.
go back to reference S. Ando et al. {1122} \( \left\langle {1123} \right\rangle \) slip in magnesium single crystal. Journal of Japan Institute of Light Metals, 42(12):765–771, 1992. S. Ando et al. {1122} \( \left\langle {1123} \right\rangle \) slip in magnesium single crystal. Journal of Japan Institute of Light Metals, 42(12):765–771, 1992.
3.
go back to reference W.B. Hutchinson and M.R. Barnett. Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals. Scripta Materialia, 63(7):737–740, 2010. Viewpoint set no. 47 Magnesium Alloy Science and Technology. W.B. Hutchinson and M.R. Barnett. Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals. Scripta Materialia, 63(7):737–740, 2010. Viewpoint set no. 47 Magnesium Alloy Science and Technology.
4.
go back to reference M.M. Avedesian, H. Baker, and A.S.M.I.H. Committee. ASM Specialty Handbook: Magnesium and Magnesium Alloys. ASM International, 1999. M.M. Avedesian, H. Baker, and A.S.M.I.H. Committee. ASM Specialty Handbook: Magnesium and Magnesium Alloys. ASM International, 1999.
5.
go back to reference W.J. Kim, H.G. Jeong, and H.T. Jeong. Achieving high strength and high ductility in magnesium alloys using severe plastic deformation combined with low-temperature aging. Scripta Materialia, 61(11):1040–1043, 2009. W.J. Kim, H.G. Jeong, and H.T. Jeong. Achieving high strength and high ductility in magnesium alloys using severe plastic deformation combined with low-temperature aging. Scripta Materialia, 61(11):1040–1043, 2009.
6.
go back to reference O. Kulyasova et al. Microstructure and mechanical properties of ultrafinegrained Mg–Zn–Ca alloy. IOP Conference Series: Materials Science and Engineering, 63(1):012142, 2014. O. Kulyasova et al. Microstructure and mechanical properties of ultrafinegrained Mg–Zn–Ca alloy. IOP Conference Series: Materials Science and Engineering, 63(1):012142, 2014.
7.
go back to reference I. J. Polmear. Magnesium alloys and applications. Materials Science and Technology, 10(1):1–16, Jan 1994. I. J. Polmear. Magnesium alloys and applications. Materials Science and Technology, 10(1):1–16, Jan 1994.
8.
go back to reference L.L. Rokhlin. Magnesium Alloys Containing Rare Earth Metals: Structure and Properties. Advances in Metallic Alloys. CRC Press, 2003. L.L. Rokhlin. Magnesium Alloys Containing Rare Earth Metals: Structure and Properties. Advances in Metallic Alloys. CRC Press, 2003.
9.
go back to reference Y. Wang and J. C. Huang. Texture analysis in hexagonal materials. Materials Chemistry and Physics, 81(1):11–26, JUL 20 2003. Y. Wang and J. C. Huang. Texture analysis in hexagonal materials. Materials Chemistry and Physics, 81(1):11–26, JUL 20 2003.
10.
go back to reference S.R. Agnew and J.F. Nie. Preface to the viewpoint set on: The current state of magnesium alloy science and technology. Scripta Materialia, 63(7):671–673, 2010. Viewpoint set no. 47 Magnesium Alloy Science and Technology. S.R. Agnew and J.F. Nie. Preface to the viewpoint set on: The current state of magnesium alloy science and technology. Scripta Materialia, 63(7):671–673, 2010. Viewpoint set no. 47 Magnesium Alloy Science and Technology.
11.
go back to reference A. Chapuis and J. H. Driver. Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals. Acta Materialia, 59(5):1986–1994, Mar 2011. A. Chapuis and J. H. Driver. Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals. Acta Materialia, 59(5):1986–1994, Mar 2011.
12.
go back to reference J. Hirsch and T. Al-Samman. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Materialia, 61(3):818–843, Feb 2013. J. Hirsch and T. Al-Samman. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Materialia, 61(3):818–843, Feb 2013.
13.
go back to reference D. Griffiths. Explaining texture weakening and improved formability in magnesium rare earth alloys. Materials Science and Technology, 31(1):10–24, 2015. D. Griffiths. Explaining texture weakening and improved formability in magnesium rare earth alloys. Materials Science and Technology, 31(1):10–24, 2015.
14.
go back to reference W. Qudong et al. Effects of ca addition on the microstructure and mechanical properties of AZ91 magnesium alloy. Journal of Materials Science, 36(12):3035–3040, Jun 2001. W. Qudong et al. Effects of ca addition on the microstructure and mechanical properties of AZ91 magnesium alloy. Journal of Materials Science, 36(12):3035–3040, Jun 2001.
15.
go back to reference A.A. Luo. Recent magnesium alloy development for elevated temperature applications. International Materials Reviews, 49(1):13–30, 2004. A.A. Luo. Recent magnesium alloy development for elevated temperature applications. International Materials Reviews, 49(1):13–30, 2004.
16.
go back to reference K. Hirai et al. Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature. Materials Science and Engineering: A, 403(1):276–280, 2005. K. Hirai et al. Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature. Materials Science and Engineering: A, 403(1):276–280, 2005.
17.
go back to reference L. Han, H. Hu, and D. O. Northwood. Effect of Ca additions on microstructure and microhardness of an as-cast Mg-5.0 wt.% Al alloy. Materials Letters, 62(3):381–384, 2008. L. Han, H. Hu, and D. O. Northwood. Effect of Ca additions on microstructure and microhardness of an as-cast Mg-5.0 wt.% Al alloy. Materials Letters, 62(3):381–384, 2008.
18.
go back to reference S.W. Xu et al. High temperature tensile properties of as-cast MgAlCa alloys. Materials Science and Engineering: A, 509(1):105–110, 2009. S.W. Xu et al. High temperature tensile properties of as-cast MgAlCa alloys. Materials Science and Engineering: A, 509(1):105–110, 2009.
19.
go back to reference L. Geng et al. Microstructure and mechanical properties of Mg–4.0Zn–0.5Ca alloy. Materials Letters, 63(5):557–559, 2009. L. Geng et al. Microstructure and mechanical properties of Mg–4.0Zn–0.5Ca alloy. Materials Letters, 63(5):557–559, 2009.
20.
go back to reference J. Jayaraj et al. Enhanced precipitation hardening of MgCa alloy by Al addition. Scripta Materialia, 63(8):831–834, 2010. J. Jayaraj et al. Enhanced precipitation hardening of MgCa alloy by Al addition. Scripta Materialia, 63(8):831–834, 2010.
21.
go back to reference B.P. Zhang et al. Enhanced mechanical properties in fine-grained Mg–1.0Zn–0.5Ca alloys prepared by extrusion at different temperatures. Scripta Materialia, 63(10):1024–1027, 2010. B.P. Zhang et al. Enhanced mechanical properties in fine-grained Mg–1.0Zn–0.5Ca alloys prepared by extrusion at different temperatures. Scripta Materialia, 63(10):1024–1027, 2010.
22.
go back to reference Y. Chino et al. Effects of Ca on tensile properties and stretch formability at room temperature in Mg–Zn and Mg–Al alloys. Materials Transactions, 52(7):1477–1482, 2011. Y. Chino et al. Effects of Ca on tensile properties and stretch formability at room temperature in Mg–Zn and Mg–Al alloys. Materials Transactions, 52(7):1477–1482, 2011.
23.
go back to reference D.H. Sastry, Y.V.R.K. Prasad, and K.I. Vasu. On the stacking fault energies of some close-packed hexagonal metals. Scripta Metallurgica, 3(12):927–929, 1969. D.H. Sastry, Y.V.R.K. Prasad, and K.I. Vasu. On the stacking fault energies of some close-packed hexagonal metals. Scripta Metallurgica, 3(12):927–929, 1969.
24.
go back to reference Y. Wang et al. First-principles calculations of twin-boundary and stacking-fault energies in magnesium. Scripta Materialia, 62(9):646–649, 2010. Y. Wang et al. First-principles calculations of twin-boundary and stacking-fault energies in magnesium. Scripta Materialia, 62(9):646–649, 2010.
25.
go back to reference A Zunger et al. Special quasirandom structures. Phys. Rev. Lett., 65:353–356, Jul 1990. A Zunger et al. Special quasirandom structures. Phys. Rev. Lett., 65:353–356, Jul 1990.
26.
go back to reference F. C. Frank. On Miller-Bravais indices and four-dimensional vectors. Acta Crystallographica, 18(5):862–866, May 1965. F. C. Frank. On Miller-Bravais indices and four-dimensional vectors. Acta Crystallographica, 18(5):862–866, May 1965.
27.
go back to reference J. Harris. Simplified method for calculating the energy of weakly interacting fragments. Phys. Rev. B, 31:1770–1779, Feb 1985. J. Harris. Simplified method for calculating the energy of weakly interacting fragments. Phys. Rev. B, 31:1770–1779, Feb 1985.
28.
go back to reference W. Matthew C. Foulkes and R. Haydock. Tight-binding models and density-functional theory. Phys. Rev. B, 39:12520–12536, Jun 1989. W. Matthew C. Foulkes and R. Haydock. Tight-binding models and density-functional theory. Phys. Rev. B, 39:12520–12536, Jun 1989.
29.
go back to reference P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864-B871, Nov 1964. P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864-B871, Nov 1964.
30.
go back to reference W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140:A1133–A1138, Nov 1965. W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140:A1133–A1138, Nov 1965.
31.
go back to reference A J Read and R J Needs. Tests of the harris energy functional. Journal of Physics: Condensed Matter, 1(41):7565, 1989. A J Read and R J Needs. Tests of the harris energy functional. Journal of Physics: Condensed Matter, 1(41):7565, 1989.
32.
go back to reference H. M. Polatoglou and M. Methfessel. Comparison of the harris and the Hohenberg-Kohn-Sham functionals for calculation of structural and vibrational properties of solids. Phys. Rev. B, 41:5898–5903, Mar 1990. H. M. Polatoglou and M. Methfessel. Comparison of the harris and the Hohenberg-Kohn-Sham functionals for calculation of structural and vibrational properties of solids. Phys. Rev. B, 41:5898–5903, Mar 1990.
33.
go back to reference M. Schilfgaarde et al. Recent advances in non self-consistent total energy calculations in alloys. In MRS Proceedings, volume 186, 1990. M. Schilfgaarde et al. Recent advances in non self-consistent total energy calculations in alloys. In MRS Proceedings, volume 186, 1990.
34.
go back to reference F. W. Averill and G. S. Painter. Harris functional and related methods for calculating total energies in density-functional theory. Phys. Rev. B, 41:10344–10353, May 1990. F. W. Averill and G. S. Painter. Harris functional and related methods for calculating total energies in density-functional theory. Phys. Rev. B, 41:10344–10353, May 1990.
35.
go back to reference N. Chetty, K. W. Jacobsen, and J. K. Norskov. Optimized and transferable densities from first-principles local density calculations. Journal of Physics: Condensed Matter, 3(28):5437, 1991. N. Chetty, K. W. Jacobsen, and J. K. Norskov. Optimized and transferable densities from first-principles local density calculations. Journal of Physics: Condensed Matter, 3(28):5437, 1991.
36.
go back to reference B. Farid et al. Extremal properties of the Harris-Foulkes functional and an improved screening calculation for the electron gas. Phys. Rev. B, 48:11602–11621, Oct 1993. B. Farid et al. Extremal properties of the Harris-Foulkes functional and an improved screening calculation for the electron gas. Phys. Rev. B, 48:11602–11621, Oct 1993.
37.
go back to reference G. D. Bellchambers and F. R. Manby. An approximate density-functional method using the Harris-Foulkes functional. The Journal of Chemical Physics, 135(8):084105, 2011. G. D. Bellchambers and F. R. Manby. An approximate density-functional method using the Harris-Foulkes functional. The Journal of Chemical Physics, 135(8):084105, 2011.
38.
go back to reference J. Hartford, L. B. Hansen, and B. I. Lundqvist. Harris functional densities: from solid to atom. Journal of Physics: Condensed Matter, 8(40):7379, 1996. J. Hartford, L. B. Hansen, and B. I. Lundqvist. Harris functional densities: from solid to atom. Journal of Physics: Condensed Matter, 8(40):7379, 1996.
39.
go back to reference M. Mezbahul-Islam, A. Mostafa, and M. Medraj. Essential magnesium alloys binary phase diagrams. Journal of Materials, April 2014. M. Mezbahul-Islam, A. Mostafa, and M. Medraj. Essential magnesium alloys binary phase diagrams. Journal of Materials, April 2014.
40.
go back to reference A. A. Nayeb-Hashemi, J. B. Clark, and A. D. Pelton. The Li–Mg (lithium-magnesium) system. Bulletin of Alloy Phase Diagrams, 5(4):365–374, Aug 1984. A. A. Nayeb-Hashemi, J. B. Clark, and A. D. Pelton. The Li–Mg (lithium-magnesium) system. Bulletin of Alloy Phase Diagrams, 5(4):365–374, Aug 1984.
41.
go back to reference A. A. Nayeb-Hashemi and J. B. Clark. The CaMg (calcium–magnesium) system. Bulletin of Alloy Phase Diagrams, 8(1):58–65, Feb 1987. A. A. Nayeb-Hashemi and J. B. Clark. The CaMg (calcium–magnesium) system. Bulletin of Alloy Phase Diagrams, 8(1):58–65, Feb 1987.
42.
go back to reference N. Chetty and M. Weinert. Stacking faults in magnesium. Phys. Rev. B, 56:10844–10851, Nov 1997. N. Chetty and M. Weinert. Stacking faults in magnesium. Phys. Rev. B, 56:10844–10851, Nov 1997.
43.
go back to reference A. E. Smith. Surface, interface and stacking fault energies of magnesium from first principles calculations. Surface Science, 601:5762–5765, 2007. A. E. Smith. Surface, interface and stacking fault energies of magnesium from first principles calculations. Surface Science, 601:5762–5765, 2007.
44.
go back to reference A. Datta, U.V. Waghmare, and U. Ramamurty. Structure and stacking faults in layered MgZnY alloys: A first-principles study. Acta Materialia, 56(11):2531–2539, 2008. A. Datta, U.V. Waghmare, and U. Ramamurty. Structure and stacking faults in layered MgZnY alloys: A first-principles study. Acta Materialia, 56(11):2531–2539, 2008.
45.
go back to reference J. A. Yasi et al. Basal and prism dislocation cores in magnesium: comparison of first-principles and embedded-atom-potential methods predictions. Modelling and Simulation in Materials Science and Engineering, 17(5):055012, 2009. J. A. Yasi et al. Basal and prism dislocation cores in magnesium: comparison of first-principles and embedded-atom-potential methods predictions. Modelling and Simulation in Materials Science and Engineering, 17(5):055012, 2009.
46.
go back to reference Q. Zhang et al. Ab initio study of the effect of solute atoms Zn and Y on stacking faults in Mg solid solution. Physica B: Condensed Matter, 416:39–44, 2013. Q. Zhang et al. Ab initio study of the effect of solute atoms Zn and Y on stacking faults in Mg solid solution. Physica B: Condensed Matter, 416:39–44, 2013.
47.
go back to reference Z. Pei et al. From generalized stacking fault energies to dislocation properties: Five-energy-point approach and solid solution effects in magnesium. Phys. Rev. B, 92:064107, Aug 2015. Z. Pei et al. From generalized stacking fault energies to dislocation properties: Five-energy-point approach and solid solution effects in magnesium. Phys. Rev. B, 92:064107, Aug 2015.
48.
go back to reference T. Nogaret et al. Atomistic study of edge and screw \( \left\langle {c + a} \right\rangle \) dislocations in magnesium. Acta Materialia, 58(13):4332–4343, 2010. T. Nogaret et al. Atomistic study of edge and screw \( \left\langle {c + a} \right\rangle \) dislocations in magnesium. Acta Materialia, 58(13):4332–4343, 2010.
49.
go back to reference J. A. Yasi, L. G. Hector, and D. R. Trinkle. First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties. Acta Materialia, 58(17):5704–5713, 2010. J. A. Yasi, L. G. Hector, and D. R. Trinkle. First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties. Acta Materialia, 58(17):5704–5713, 2010.
50.
go back to reference M. Muzyk, Z. Pakiela, and K.J. Kurzydlowski. Generalized stacking fault energy in magnesium alloys: Density functional theory calculations. Scripta Materialia, 66(5):219–222, 2012. M. Muzyk, Z. Pakiela, and K.J. Kurzydlowski. Generalized stacking fault energy in magnesium alloys: Density functional theory calculations. Scripta Materialia, 66(5):219–222, 2012.
51.
go back to reference S. L. Shang et al. Generalized stacking fault energy, ideal strength and twinnability of dilute Mg-based alloys: A first-principles study of shear deformation. Acta Materialia, 67:168–180, 2014. S. L. Shang et al. Generalized stacking fault energy, ideal strength and twinnability of dilute Mg-based alloys: A first-principles study of shear deformation. Acta Materialia, 67:168–180, 2014.
52.
go back to reference M. Yuasa et al. Improved plastic anisotropy of MgZnCa alloys exhibiting high-stretch formability: A first-principles study. Acta Materialia, 65:207–214, 2014. M. Yuasa et al. Improved plastic anisotropy of MgZnCa alloys exhibiting high-stretch formability: A first-principles study. Acta Materialia, 65:207–214, 2014.
53.
go back to reference J. D. Robson. Effect of Rare-Earth additions on the texture of wrought magnesium alloys: The role of grain boundary segregation. Metallurgical and Materials Transactions A, 45(8):3205–3212, Jul 2014. J. D. Robson. Effect of Rare-Earth additions on the texture of wrought magnesium alloys: The role of grain boundary segregation. Metallurgical and Materials Transactions A, 45(8):3205–3212, Jul 2014.
54.
go back to reference J. Han et al. Basal-plane stacking-fault energies of Mg: A first-principles study of Li- and Al-alloying effects. Scripta Materialia, 64(8):693–696, 2011. J. Han et al. Basal-plane stacking-fault energies of Mg: A first-principles study of Li- and Al-alloying effects. Scripta Materialia, 64(8):693–696, 2011.
55.
go back to reference Z. Wu and W. A. Curtin. The origins of high hardening and low ductility in magnesium. Nature, 526(7571):6267, October 2015. Z. Wu and W. A. Curtin. The origins of high hardening and low ductility in magnesium. Nature, 526(7571):6267, October 2015.
Metadata
Title
Effect of Ca on the Microstructure and Mechanical Properties in Mg Alloys
Authors
E. I. Andritsos
G. C. G. Skinner
A. T. Paxton
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-72332-7_11

Premium Partners