Skip to main content
Top
Published in: Cellulose 2/2012

01-04-2012

Effect of cellulose nanofiber dimensions on sheet forming through filtration

Authors: Liyuan Zhang, Warren Batchelor, Swambabu Varanasi, Takuya Tsuzuki, Xungai Wang

Published in: Cellulose | Issue 2/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Four different cellulose nanofibers samples were prepared from northern bleached softwood kraft fibers. Fiber diameter distributions were measured from SEM images. Fiber aspect ratios ranging from 84 to 146 were estimated from fiber suspension sedimentation measurements. Three samples had heterogeneous distributions of fiber diameters, while one sample was more homogeneous. Sheet forming experiments using filters with pores ranging from 150 to 5 μm showed that the samples with a heterogeneous distribution of fiber dimensions could be easily formed into sheets at 0.2% initial solids concentration with all filter openings. On the other hand, sheets could only be formed from the homogenous sample by using 0.5% or more initial solids content and a lower applied vacuum and smaller filter openings. The forming data and estimated aspect ratios show reasonable agreement with the predictions of the crowding number and percolation theories for the connectivity and rigidity thresholds for fiber suspensions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ahola S, Österberg M, Laine J (2008) Cellulose nanofibrils—adsorption with poly (amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15(2):303–314. doi:10.1007/s10570-007-9167-3 CrossRef Ahola S, Österberg M, Laine J (2008) Cellulose nanofibrils—adsorption with poly (amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15(2):303–314. doi:10.​1007/​s10570-007-9167-3 CrossRef
go back to reference Ampulski RS (2001) Report of investigation reference materials 8495 Northern Softwood Bleached Kraft 8496 Eucalyptus Hardwood Bleached Kraft. National Institute of Standards and Technology Gaithersburg, MD Ampulski RS (2001) Report of investigation reference materials 8495 Northern Softwood Bleached Kraft 8496 Eucalyptus Hardwood Bleached Kraft. National Institute of Standards and Technology Gaithersburg, MD
go back to reference Andresen M, Stenius P (2007) Water-in-oil emulsions stabilized by hydrophobized micro fibrillated cellulose. J Dispers Sci Technol 28(6):837–844CrossRef Andresen M, Stenius P (2007) Water-in-oil emulsions stabilized by hydrophobized micro fibrillated cellulose. J Dispers Sci Technol 28(6):837–844CrossRef
go back to reference Berglund LA, Peijs T (2010) Cellulose biocomposites—from bulk moldings to nanostructured systems. MRS Bull 35(3):201–207CrossRef Berglund LA, Peijs T (2010) Cellulose biocomposites—from bulk moldings to nanostructured systems. MRS Bull 35(3):201–207CrossRef
go back to reference Celzard A, Fierro V, Kerekes R (2009) Flocculation of cellulose fibres: new comparison of crowding factor with percolation and effective-medium theories. Cellulose 16(6):983–987CrossRef Celzard A, Fierro V, Kerekes R (2009) Flocculation of cellulose fibres: new comparison of crowding factor with percolation and effective-medium theories. Cellulose 16(6):983–987CrossRef
go back to reference Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J Appl Polym Sci 76(14):2080–2092CrossRef Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J Appl Polym Sci 76(14):2080–2092CrossRef
go back to reference Dunham AJ, Sherman LM, Alfano JC (2002) Effect of dissolved and colloidal substances on drainage properties of mechanical pulp suspensions. J Pulp Pap Sci 28(9):298–304 Dunham AJ, Sherman LM, Alfano JC (2002) Effect of dissolved and colloidal substances on drainage properties of mechanical pulp suspensions. J Pulp Pap Sci 28(9):298–304
go back to reference Edgar CD, Gray DG (2003) Smooth model cellulose I surfaces from nanocrystal suspensions. Cellulose 10(4):299–306CrossRef Edgar CD, Gray DG (2003) Smooth model cellulose I surfaces from nanocrystal suspensions. Cellulose 10(4):299–306CrossRef
go back to reference Eichhorn S, Dufresne A, Aranguren M, Marcovich N, Capadona J, Rowan S, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito A, Mangalam A, Simonsen J, Benight A, Bismarck A, Berglund L, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33. doi:10.1007/s10853-009-3874-0 CrossRef Eichhorn S, Dufresne A, Aranguren M, Marcovich N, Capadona J, Rowan S, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito A, Mangalam A, Simonsen J, Benight A, Bismarck A, Berglund L, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33. doi:10.​1007/​s10853-009-3874-0 CrossRef
go back to reference Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585. doi:10.1021/bm800038n CrossRef Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585. doi:10.​1021/​bm800038n CrossRef
go back to reference Ishii D, Saito T, Isogai A (2011) Viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 12(3):548–550. doi:10.1021/bm1013876 CrossRef Ishii D, Saito T, Isogai A (2011) Viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 12(3):548–550. doi:10.​1021/​bm1013876 CrossRef
go back to reference Janarthanan S, Sain M (2006) Isolation of cellulose micro fibrils—an enzymatic approach. Bioresources 1(2):176–188 Janarthanan S, Sain M (2006) Isolation of cellulose micro fibrils—an enzymatic approach. Bioresources 1(2):176–188
go back to reference Martinez DM, Buckley K, Jivan S, Lindstrom A, Thiruvengadaswamy R, Olson JA, Ruth TJ, Kerekes RJ (2001) Characterizing the mobility of papermaking fibres during sedimentation. In: Baker CF (ed) The science of papermaking: transactions of the 12th fundamental research symposium, Oxford. The Pulp and Paper Fundamental Research Society, Bury, UK, pp 225–254 Martinez DM, Buckley K, Jivan S, Lindstrom A, Thiruvengadaswamy R, Olson JA, Ruth TJ, Kerekes RJ (2001) Characterizing the mobility of papermaking fibres during sedimentation. In: Baker CF (ed) The science of papermaking: transactions of the 12th fundamental research symposium, Oxford. The Pulp and Paper Fundamental Research Society, Bury, UK, pp 225–254
go back to reference Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phy A Mater Sci Process 80(1):155–159. doi:10.1007/s00339-003-2225-2 CrossRef Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phy A Mater Sci Process 80(1):155–159. doi:10.​1007/​s00339-003-2225-2 CrossRef
go back to reference Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21(16):1595–1598CrossRef Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21(16):1595–1598CrossRef
go back to reference Raisanen KO, Paulapuro H, Karrila SJ (1995) The effects of retention aids, drainage conditions, and pretreatment of slurry on high-vacuum dewatering—a laboratory study. TAPPI J 78(4):140–147 Raisanen KO, Paulapuro H, Karrila SJ (1995) The effects of retention aids, drainage conditions, and pretreatment of slurry on high-vacuum dewatering—a laboratory study. TAPPI J 78(4):140–147
go back to reference Saito T, Isogai A (2006) Wet strength improvement of TEMPO-oxidized cellulose sheets prepared with cationic polymers. Ind Eng Chem Res 46(3):773–780. doi:10.1021/ie0611608 CrossRef Saito T, Isogai A (2006) Wet strength improvement of TEMPO-oxidized cellulose sheets prepared with cationic polymers. Ind Eng Chem Res 46(3):773–780. doi:10.​1021/​ie0611608 CrossRef
go back to reference Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11(9):2195–2198. doi:10.1021/bm100490s CrossRef Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11(9):2195–2198. doi:10.​1021/​bm100490s CrossRef
go back to reference Trovatti E, Oliveira L, Freire CSR, Silvestre AJD, Pascoal Neto C, Cruz Pinto JJC, Gandini A (2010) Novel bacterial cellulose-acrylic resin nanocomposites. Compos Sci Technol 70(7):1148–1153CrossRef Trovatti E, Oliveira L, Freire CSR, Silvestre AJD, Pascoal Neto C, Cruz Pinto JJC, Gandini A (2010) Novel bacterial cellulose-acrylic resin nanocomposites. Compos Sci Technol 70(7):1148–1153CrossRef
go back to reference Tunç S, Duman O (2011) Preparation of active antimicrobial methyl cellulose/carvacrol/montmorillonitenanocomposite films and investigation of carvacrol release. LWT–Food Sci Technol 44(2):465–472 Tunç S, Duman O (2011) Preparation of active antimicrobial methyl cellulose/carvacrol/montmorillonitenanocomposite films and investigation of carvacrol release. LWT–Food Sci Technol 44(2):465–472
go back to reference Xu L, Parker I (2000) Simulating the forming process with the moving belt drainage former. Appita J 53(4):282–286 Xu L, Parker I (2000) Simulating the forming process with the moving belt drainage former. Appita J 53(4):282–286
go back to reference Zhang LY, Tsuzuki T, Wang XG (2010) Preparation and characterization on cellulose nanofiber film. Mater Sci Forum 654–656:1760–1763 Zhang LY, Tsuzuki T, Wang XG (2010) Preparation and characterization on cellulose nanofiber film. Mater Sci Forum 654–656:1760–1763
Metadata
Title
Effect of cellulose nanofiber dimensions on sheet forming through filtration
Authors
Liyuan Zhang
Warren Batchelor
Swambabu Varanasi
Takuya Tsuzuki
Xungai Wang
Publication date
01-04-2012
Publisher
Springer Netherlands
Published in
Cellulose / Issue 2/2012
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-011-9641-9

Other articles of this Issue 2/2012

Cellulose 2/2012 Go to the issue