Skip to main content
Top
Published in:

12-05-2021

Effect of Chemical Composition and Structure on the Shape Recovery Temperatures of Titanium Nickelide-Based Alloys

Authors: M. Yu. Kollerov, D. E. Gusev, A. A. Sharonov, M. B. Afonina

Published in: Metallurgist | Issue 1-2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The study explores the impact of chemical composition and structure on the shape recovery temperatures of titanium nickelide alloys, which exhibit shape memory effect. Researchers analyzed the influence of smelting methods, hot deformation, and heat treatment on the phase composition and structure of these alloys. Notably, they discovered that the presence of Ti2Ni and Ti4Ni2(O, N) particles significantly affects the ductility and shape recovery temperatures. The findings offer valuable formulas for calculating nickel content in the B2 phase and estimating the volume fraction of Ti3Ni4 particles, contributing to the development of more accurate processing technologies for these alloys.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Literature
2.
go back to reference O. Benefan, J. Brown, F. T. Calkins, P. Kumar, A. P. Stebner, T. L. Turner, R. Vaidyanathan, J. Webster, and M. L. Young, “Shape memory alloy actuator design: CASMART collaborative best practices and case studies,” Int. J. Mech. Mater. Des., No. 10, 1–42 (2014). O. Benefan, J. Brown, F. T. Calkins, P. Kumar, A. P. Stebner, T. L. Turner, R. Vaidyanathan, J. Webster, and M. L. Young, “Shape memory alloy actuator design: CASMART collaborative best practices and case studies,” Int. J. Mech. Mater. Des., No. 10, 1–42 (2014).
3.
go back to reference A. A. Ilyin, M. Yu. Kollerov, V. I. Khachin, and D. A. Gusev, “Medical instruments and implants of titanium nickelide: physical metallurgy, technology, and application,” Russ. Metall., No. 3, 296–300 (2002). A. A. Ilyin, M. Yu. Kollerov, V. I. Khachin, and D. A. Gusev, “Medical instruments and implants of titanium nickelide: physical metallurgy, technology, and application,” Russ. Metall., No. 3, 296–300 (2002).
4.
go back to reference E. Lukina, M. Kollerov, J. Meswania, P. Panin, A. Khon, and G. Blunn, “The influence of TiN and DLC deposition on the wear resistance of Nitinol-Ti6Al4V combination for the medical application,” Mater. Today: Proc., 4, No. 3., 4675–4679 (2017). E. Lukina, M. Kollerov, J. Meswania, P. Panin, A. Khon, and G. Blunn, “The influence of TiN and DLC deposition on the wear resistance of Nitinol-Ti6Al4V combination for the medical application,” Mater. Today: Proc., 4, No. 3., 4675–4679 (2017).
5.
go back to reference J. Frenzel, E. P. George, A. Dlouhy, Ch. Somsen, M. F.-X. Wagner, and G. Eggeler, “Influence of Ni on martensitic phase transformations in NiTi shape memory alloys,” Acta Mater., 58, No. 9, 3444–3458 (2010).CrossRef J. Frenzel, E. P. George, A. Dlouhy, Ch. Somsen, M. F.-X. Wagner, and G. Eggeler, “Influence of Ni on martensitic phase transformations in NiTi shape memory alloys,” Acta Mater., 58, No. 9, 3444–3458 (2010).CrossRef
6.
go back to reference J. Khalil-Allafia and B. Amin-Ahmadi, “The effect of chemical composition on enthalpy and entropy changes of martensitic transformations in binary NiTi shape memory alloys,” J. Alloys Comp., 487, 363–366 (2009).CrossRef J. Khalil-Allafia and B. Amin-Ahmadi, “The effect of chemical composition on enthalpy and entropy changes of martensitic transformations in binary NiTi shape memory alloys,” J. Alloys Comp., 487, 363–366 (2009).CrossRef
7.
go back to reference K. Mehrabi, H. Bahmanpour, A. Shokuhfar, and A. Kneissl, “Influence of chemical composition and manufacturing conditions on properties of NiTi shape memory alloys,” Mater. Sci. and Eng. A., 481–482, 693–696 (2008).CrossRef K. Mehrabi, H. Bahmanpour, A. Shokuhfar, and A. Kneissl, “Influence of chemical composition and manufacturing conditions on properties of NiTi shape memory alloys,” Mater. Sci. and Eng. A., 481–482, 693–696 (2008).CrossRef
8.
go back to reference S. M. Russell and A. R. Pelton, “Nitinol Melting and Fabrication,” Proceedings of SMST, 2000, (2000). S. M. Russell and A. R. Pelton, “Nitinol Melting and Fabrication,” Proceedings of SMST, 2000, (2000).
9.
go back to reference M. H. Elahinia, M. Hashemi, M. Tabesh, and S. B. Bhaduri, “Manufacturing and processing of NiTi implants: A review,” Prog. Mater. Sci., 57, 911–946 (2012).CrossRef M. H. Elahinia, M. Hashemi, M. Tabesh, and S. B. Bhaduri, “Manufacturing and processing of NiTi implants: A review,” Prog. Mater. Sci., 57, 911–946 (2012).CrossRef
10.
go back to reference D. E. Gusev, M. Yu. Kollerov, and A. A. Popov, “Effect of the volume fraction of Ti2Ni and aging on the structure and properties of alloys based on titanium nickelide,” Met. Sci. Heat Treat., 60, Is. 1-2, 72–79 (2018). D. E. Gusev, M. Yu. Kollerov, and A. A. Popov, “Effect of the volume fraction of Ti2Ni and aging on the structure and properties of alloys based on titanium nickelide,” Met. Sci. Heat Treat., 60, Is. 1-2, 72–79 (2018).
11.
go back to reference K. Otsuka and X. Ren, “Physical metallurgy of Ti–Ni-based shape memory alloys,” Prog. Mater. Sci., 50, No. 5, 511–678 (2005).CrossRef K. Otsuka and X. Ren, “Physical metallurgy of Ti–Ni-based shape memory alloys,” Prog. Mater. Sci., 50, No. 5, 511–678 (2005).CrossRef
12.
go back to reference A. Coda, S. Zilio, D. Norwich, and F. Sczerzenie, “Characterization of Inclusions in VIM/VAR NiTi Alloys,” J. Mater. Eng. Perform., 21, 2572–2577 (2012).CrossRef A. Coda, S. Zilio, D. Norwich, and F. Sczerzenie, “Characterization of Inclusions in VIM/VAR NiTi Alloys,” J. Mater. Eng. Perform., 21, 2572–2577 (2012).CrossRef
13.
go back to reference A. Toro, F. Zhou, M. H. Wu, W. Van Geertruyden, and W. Z. Misiolek, “Characterization of non-metallic inclusions in superelastic NiTi tubes,” J. Mater. Eng. Perform., 18, 448–458 (2009).CrossRef A. Toro, F. Zhou, M. H. Wu, W. Van Geertruyden, and W. Z. Misiolek, “Characterization of non-metallic inclusions in superelastic NiTi tubes,” J. Mater. Eng. Perform., 18, 448–458 (2009).CrossRef
14.
go back to reference A. I. Lotkov, S. Yu. Zavodchikov, V. A. Kotrekhov, V. N. Grishkov, N. V. Girsova, and V. N. Timkin, “Structure and martensitic transformations in titanium nickelide ingots obtained by vacuum induction melting with a cold crucible,” Persp. Mat., 1, No. 13 (Special edition), 31–42 (2011). A. I. Lotkov, S. Yu. Zavodchikov, V. A. Kotrekhov, V. N. Grishkov, N. V. Girsova, and V. N. Timkin, “Structure and martensitic transformations in titanium nickelide ingots obtained by vacuum induction melting with a cold crucible,” Persp. Mat., 1, No. 13 (Special edition), 31–42 (2011).
15.
go back to reference V. V. Tetyukhin, I. V. Levin, M. I. Musatov, I. Yu. Puzakov, S. M. Chechulin, and N. Yu. Tarenkova, “Skull melting as a promising method for the production of complex alloyed titanium alloys,” Tekh. Legk. Spl., No. 4, 7–12 (2007). V. V. Tetyukhin, I. V. Levin, M. I. Musatov, I. Yu. Puzakov, S. M. Chechulin, and N. Yu. Tarenkova, “Skull melting as a promising method for the production of complex alloyed titanium alloys,” Tekh. Legk. Spl., No. 4, 7–12 (2007).
16.
go back to reference ASTM F2082/F2082M-16, Standard Test Method for Determination of Transformation Temperature of Nickel-Titanium Shape Memory Alloys by Bend and Free Recovery, ASTM International, West Conshohocken, PA, 2016; [electronic resource] www.astm.org (requested on 27.07.2020). ASTM F2082/F2082M-16, Standard Test Method for Determination of Transformation Temperature of Nickel-Titanium Shape Memory Alloys by Bend and Free Recovery, ASTM International, West Conshohocken, PA, 2016; [electronic resource] www.astm.org (requested on 27.07.2020).
17.
go back to reference ASTM F2063–18, Standard Specification for Wrought Nickel-Titanium Shape Memory Alloys for Medical Devices and Surgical Implants, ASTM International, West Conshohocken, PA (2018); [electronic resource] www.astm.org (requested on 27.07.2020). ASTM F2063–18, Standard Specification for Wrought Nickel-Titanium Shape Memory Alloys for Medical Devices and Surgical Implants, ASTM International, West Conshohocken, PA (2018); [electronic resource] www.astm.org (requested on 27.07.2020).
18.
go back to reference M. Yu. Kollerov, D. E. Gusev, A. A. Chernysheva, D. A. Lamzin, A. V. Matytsin, and S. I. Gurtovoy, “Influence of the chemical composition and volume fraction of the Ti2Ni intermetallic compound on the characteristics of the shape memory effect in alloys based on titanium nickelide,” Nauch. Trud. MATI, No. 11 (83), Moscow, Lamtec, 12–16 (2006). M. Yu. Kollerov, D. E. Gusev, A. A. Chernysheva, D. A. Lamzin, A. V. Matytsin, and S. I. Gurtovoy, “Influence of the chemical composition and volume fraction of the Ti2Ni intermetallic compound on the characteristics of the shape memory effect in alloys based on titanium nickelide,” Nauch. Trud. MATI, No. 11 (83), Moscow, Lamtec, 12–16 (2006).
19.
go back to reference M. Yu. Kollerov, D. E. Gusev, A. A. Chernyshova, S. I. Gurtovoy, and R. E. Vinogradov, “Influence of the content of nickel and impurities on the structure and temperature of the shape memory effect of alloys based on titanium nickelide,” Titan, 63, No. 1, 7–14 (2019). M. Yu. Kollerov, D. E. Gusev, A. A. Chernyshova, S. I. Gurtovoy, and R. E. Vinogradov, “Influence of the content of nickel and impurities on the structure and temperature of the shape memory effect of alloys based on titanium nickelide,” Titan, 63, No. 1, 7–14 (2019).
20.
go back to reference G. R. Purdy and J. G. Parr, “A study of the titanium-nickel system between Ti2Ni and TiNi,” Trans. Metall. Soc. AIME, 221, 636–639 (1961). G. R. Purdy and J. G. Parr, “A study of the titanium-nickel system between Ti2Ni and TiNi,” Trans. Metall. Soc. AIME, 221, 636–639 (1961).
21.
go back to reference A. A. Ilyin, Mechanism and Kinetics of Phase and Structural Transformations in Titanium Alloys, Moscow, Nauka (1994). A. A. Ilyin, Mechanism and Kinetics of Phase and Structural Transformations in Titanium Alloys, Moscow, Nauka (1994).
22.
go back to reference D. Holec, M. Friak, A. Dlouhy, and J. Neugebauer, “Ab initio study of point defects in NiTi-based alloys,” Phys. Rev. B, 89, 014110, 1–6 (2014). D. Holec, M. Friak, A. Dlouhy, and J. Neugebauer, “Ab initio study of point defects in NiTi-based alloys,” Phys. Rev. B, 89, 014110, 1–6 (2014).
23.
go back to reference J. M. Lu, Q. M. Hu, L. Wang, Y. J. Li, D. S. Xu, and R. Yang, “Point defects and their interaction in TiNi from first-principles calculations,” Phys. Rev. B, 75, 094108, 1–7 (2007). J. M. Lu, Q. M. Hu, L. Wang, Y. J. Li, D. S. Xu, and R. Yang, “Point defects and their interaction in TiNi from first-principles calculations,” Phys. Rev. B, 75, 094108, 1–7 (2007).
24.
go back to reference X. Ren and K. Otsuka, “A unified model for point-defect formation in B2 intermetallic compounds,” Philos. Mag. A, 80, No. 2, 467–491 (2000).CrossRef X. Ren and K. Otsuka, “A unified model for point-defect formation in B2 intermetallic compounds,” Philos. Mag. A, 80, No. 2, 467–491 (2000).CrossRef
25.
go back to reference G. Erdelyi, Z. Erdelyi, D. L. Beke, J. Bernardini, and C. Lexcellent, “Pressure dependence of Ni self-diffusion in NiTi,” Phys. Rev. B., 62, No. 17, 11284–11287 (2000).CrossRef G. Erdelyi, Z. Erdelyi, D. L. Beke, J. Bernardini, and C. Lexcellent, “Pressure dependence of Ni self-diffusion in NiTi,” Phys. Rev. B., 62, No. 17, 11284–11287 (2000).CrossRef
Metadata
Title
Effect of Chemical Composition and Structure on the Shape Recovery Temperatures of Titanium Nickelide-Based Alloys
Authors
M. Yu. Kollerov
D. E. Gusev
A. A. Sharonov
M. B. Afonina
Publication date
12-05-2021
Publisher
Springer US
Published in
Metallurgist / Issue 1-2/2021
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-021-01137-6

Premium Partners